Chapter 11: Problem 64
Evaluate the following definite integrals. $$\int_{0}^{\ln 2}\left(e^{-t} \mathbf{i}+2 e^{2 t} \mathbf{j}-4 e^{t} \mathbf{k}\right) d t$$
Chapter 11: Problem 64
Evaluate the following definite integrals. $$\int_{0}^{\ln 2}\left(e^{-t} \mathbf{i}+2 e^{2 t} \mathbf{j}-4 e^{t} \mathbf{k}\right) d t$$
All the tools & learning materials you need for study success - in one app.
Get started for freeSuppose the vector-valued function \(\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle\) is smooth on an interval containing the point \(t_{0} .\) The line tangent to \(\mathbf{r}(t)\) at \(t=t_{0}\) is the line parallel to the tangent vector \(\mathbf{r}^{\prime}\left(t_{0}\right)\) that passes through \(\left(f\left(t_{0}\right), g\left(t_{0}\right), h\left(t_{0}\right)\right) .\) For each of the following functions, find an equation of the line tangent to the curve at \(t=t_{0} .\) Choose an orientation for the line that is the same as the direction of \(\mathbf{r}^{\prime}\). $$\mathbf{r}(t)=\langle\sqrt{2 t+1}, \sin \pi t, 4\rangle ; t_{0}=4$$
Compute \(\mathbf{r}^{\prime \prime}(t)\) and \(\mathbf{r}^{\prime \prime \prime}(t)\) for the following functions. $$\mathbf{r}(t)=\langle\cos 3 t, \sin 4 t, \cos 6 t\rangle$$
Let \(\mathbf{u}(t)=\left\langle 1, t, t^{2}\right\rangle, \mathbf{v}(t)=\left\langle t^{2},-2 t, 1\right\rangle\) and \(g(t)=2 \sqrt{t}\). Compute the derivatives of the following functions. $$\mathbf{v}(g(t))$$
Prove the following vector properties using components. Then make a sketch to illustrate the property geometrically. Suppose \(\mathbf{u}, \mathbf{v},\) and \(\mathbf{w}\) are vectors in the \(x y\) -plane and a and \(c\) are scalars. $$\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$$
Consider the curve \(\mathbf{r}(t)=(a \cos t+b \sin t) \mathbf{i}+(c \cos t+d \sin t) \mathbf{j}+(e \cos t+f \sin t) \mathbf{k}\) where \(a, b, c, d, e,\) and \(f\) are real numbers. It can be shown that this curve lies in a plane. Find a general expression for a nonzero vector orthogonal to the plane containing the curve. $$\begin{aligned}\mathbf{r}(t)=&(a \cos t+b \sin t) \mathbf{i}+(c \cos t+d \sin t) \mathbf{j} \\ &+(e \cos t+f \sin t) \mathbf{k},\end{aligned}$$ where \(\langle a, c, e\rangle \times\langle b, d, f\rangle \neq \mathbf{0}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.