Chapter 11: Problem 63
Consider an object moving along the circular trajectory \(\mathbf{r}(t)=\langle A \cos \omega t, A \sin \omega t\rangle,\) where \(A\) and \(\omega\) are constants. a. Over what time interval \([0, T]\) does the object traverse the circle once? b. Find the velocity and speed of the object. Is the velocity constant in either direction or magnitude? Is the speed constant? c. Find the acceleration of the object. d. How are the position and velocity related? How are the position and acceleration related? e. Sketch the position, velocity, and acceleration vectors at four different points on the trajectory with \(A=\omega=1\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.