Chapter 11: Problem 62
Evaluate the following definite integrals. $$\int_{1 / 2}^{1}\left(\frac{3}{1+2 t} \mathbf{i}-\pi \csc ^{2}\left(\frac{\pi}{2} t\right) \mathbf{k}\right) d t$$
Chapter 11: Problem 62
Evaluate the following definite integrals. $$\int_{1 / 2}^{1}\left(\frac{3}{1+2 t} \mathbf{i}-\pi \csc ^{2}\left(\frac{\pi}{2} t\right) \mathbf{k}\right) d t$$
All the tools & learning materials you need for study success - in one app.
Get started for freeCompute \(\mathbf{r}^{\prime \prime}(t)\) and \(\mathbf{r}^{\prime \prime \prime}(t)\) for the following functions. $$\mathbf{r}(t)=\sqrt{t+4} \mathbf{i}+\frac{t}{t+1} \mathbf{j}-e^{-t^{2}} \mathbf{k}$$
Cusps and noncusps a. Graph the curve \(\mathbf{r}(t)=\left\langle t^{3}, t^{3}\right\rangle .\) Show that \(\mathbf{r}^{\prime}(0)=\mathbf{0}\) and the curve does not have a cusp at \(t=0 .\) Explain. b. Graph the curve \(\mathbf{r}(t)=\left\langle t^{3}, t^{2}\right\rangle .\) Show that \(\mathbf{r}^{\prime}(0)=\mathbf{0}\) and the curve has a cusp at \(t=0 .\) Explain. c. The functions \(\mathbf{r}(t)=\left\langle t, t^{2}\right\rangle\) and \(\mathbf{p}(t)=\left\langle t^{2}, t^{4}\right\rangle\) both satisfy \(y=x^{2} .\) Explain how the curves they parameterize are different. d. Consider the curve \(\mathbf{r}(t)=\left\langle t^{m}, t^{n}\right\rangle,\) where \(m>1\) and \(n>1\) are integers with no common factors. Is it true that the curve has a cusp at \(t=0\) if one (not both) of \(m\) and \(n\) is even? Explain.
Find the function \(\mathbf{r}\) that satisfies the given conditions. $$\mathbf{r}^{\prime}(t)=\langle\sqrt{t}, \cos \pi t, 4 / t\rangle ; \mathbf{r}(1)=\langle 2,3,4\rangle$$
Compute \(\mathbf{r}^{\prime \prime}(t)\) and \(\mathbf{r}^{\prime \prime \prime}(t)\) for the following functions. $$\mathbf{r}(t)=\left\langle 3 t^{12}-t^{2}, t^{8}+t^{3}, t^{-4}-2\right\rangle$$
Prove the following vector properties using components. Then make a sketch to illustrate the property geometrically. Suppose \(\mathbf{u}, \mathbf{v},\) and \(\mathbf{w}\) are vectors in the \(x y\) -plane and a and \(c\) are scalars. $$a(c \mathbf{v})=(a c) \mathbf{v}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.