Chapter 11: Problem 60
Evaluate the following definite integrals. $$\int_{1}^{4}\left(6 t^{2} \mathbf{i}+8 t^{3} \mathbf{j}+9 t^{2} \mathbf{k}\right) d t$$
Chapter 11: Problem 60
Evaluate the following definite integrals. $$\int_{1}^{4}\left(6 t^{2} \mathbf{i}+8 t^{3} \mathbf{j}+9 t^{2} \mathbf{k}\right) d t$$
All the tools & learning materials you need for study success - in one app.
Get started for freeRelationship between \(\mathbf{r}\) and \(\mathbf{r}^{\prime}\) Consider the ellipse \(\mathbf{r}(t)=\langle 2 \cos t, 8 \sin t, 0\rangle,\) for \(0 \leq t \leq 2 \pi\) Find all points on the ellipse at which \(\mathbf{r}\) and \(\mathbf{r}^{\prime}\) are orthogonal.
Compute \(\mathbf{r}^{\prime \prime}(t)\) and \(\mathbf{r}^{\prime \prime \prime}(t)\) for the following functions. $$\mathbf{r}(t)=\langle\cos 3 t, \sin 4 t, \cos 6 t\rangle$$
Compute the indefinite integral of the following functions. $$\mathbf{r}(t)=\left\langle 5 t^{-4}-t^{2}, t^{6}-4 t^{3}, 2 / t\right\rangle$$
Distance between a point and a line in the plane Use projections to find a general formula for the (least) distance between the point \(\left.P\left(x_{0}, y_{0}\right) \text { and the line } a x+b y=c . \text { (See Exercises } 62-65 .\right)\).
Properties of dot products Let \(\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle\) \(\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle,\) and \(\mathbf{w}=\left\langle w_{1}, w_{2}, w_{3}\right\rangle .\) Prove the following vector properties, where \(c\) is a scalar. $$|\mathbf{u} \cdot \mathbf{v}| \leq|\mathbf{u} \| \mathbf{v}|$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.