Chapter 11: Problem 59
Evaluate the following definite integrals. $$\int_{-1}^{1}\left(\mathbf{i}+t \mathbf{j}+3 t^{2} \mathbf{k}\right) d t$$
Chapter 11: Problem 59
Evaluate the following definite integrals. $$\int_{-1}^{1}\left(\mathbf{i}+t \mathbf{j}+3 t^{2} \mathbf{k}\right) d t$$
All the tools & learning materials you need for study success - in one app.
Get started for freeAn ant walks due east at a constant speed of \(2 \mathrm{mi} / \mathrm{hr}\) on a sheet of paper that rests on a table. Suddenly, the sheet of paper starts moving southeast at \(\sqrt{2} \mathrm{mi} / \mathrm{hr} .\) Describe the motion of the ant relative to the table.
Properties of dot products Let \(\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle\) \(\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle,\) and \(\mathbf{w}=\left\langle w_{1}, w_{2}, w_{3}\right\rangle .\) Prove the following vector properties, where \(c\) is a scalar. $$\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$$
Graph the curve \(\mathbf{r}(t)=\left\langle\frac{1}{2} \sin 2 t, \frac{1}{2}(1-\cos 2 t), \cos t\right\rangle\) and prove that it lies on the surface of a sphere centered at the origin.
Relationship between \(\mathbf{r}\) and \(\mathbf{r}^{\prime}\)
Consider the parabola \(\mathbf{r}(t)=\left\langle a t^{2}+1, t\right\rangle,\)
for \(-\infty
Let \(\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle\). a. Assume that \(\lim \mathbf{r}(t)=\mathbf{L}=\left\langle L_{1}, L_{2}, L_{3}\right\rangle,\) which means that \(\lim _{t \rightarrow a}|\mathbf{r}(t)-\mathbf{L}|=0 .\) Prove that \(\lim _{t \rightarrow a} f(t)=L_{1}, \quad \lim _{t \rightarrow a} g(t)=L_{2}, \quad\) and \(\quad \lim _{t \rightarrow a} h(t)=L_{3}\). b. Assume that \(\lim _{t \rightarrow a} f(t)=L_{1}, \lim _{t \rightarrow a} g(t)=L_{2},\) and \(\lim _{t \rightarrow a} h(t)=L_{3} .\) Prove that \(\lim _{t \rightarrow a} \mathbf{r}(t)=\mathbf{L}=\left\langle L_{1}, L_{2}, L_{3}\right\rangle\) which means that \(\lim _{t \rightarrow a}|\mathbf{r}(t)-\mathbf{L}|=0\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.