Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the domain of the following vector-valued functions. $$\mathbf{r}(t)=\cos 2 t \mathbf{i}+e^{\sqrt{t}} \mathbf{j}+\frac{12}{t} \mathbf{k}$$

Short Answer

Expert verified
Answer: The domain of the given vector-valued function is \(t > 0\).

Step by step solution

01

Analyze the first component

The first component is given by \(\cos 2t\). The cosine function is defined for all real numbers, so there are no domain restrictions for this component.
02

Analyze the second component

The second component is given by \(e^{\sqrt{t}}\). The exponential function is defined for all real numbers, but since we have \(\sqrt{t}\), we need to ensure \(t \geq 0\). So the domain restriction for this component is \(t \geq 0\).
03

Analyze the third component

The third component is given by \(\frac{12}{t}\). This function is undefined when \(t = 0\), so the domain restriction for this component is \(t \neq 0\).
04

Combine domain restrictions

To find the overall domain of the vector-valued function, we need to combine the domain restrictions found from each component. From Step 2, we have \(t \geq 0\). From Step 3, we have \(t \neq 0\). Combining these restrictions, we get the overall domain as \(t > 0\).
05

Final Answer

The domain of the given vector-valued function is \(t > 0\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Distance between a point and a line in the plane Use projections to find a general formula for the (least) distance between the point \(\left.P\left(x_{0}, y_{0}\right) \text { and the line } a x+b y=c . \text { (See Exercises } 62-65 .\right)\).

Graph the curve \(\mathbf{r}(t)=\left\langle\frac{1}{2} \sin 2 t, \frac{1}{2}(1-\cos 2 t), \cos t\right\rangle\) and prove that it lies on the surface of a sphere centered at the origin.

Let $$\mathbf{u}(t)=2 t^{3} \mathbf{i}+\left(t^{2}-1\right) \mathbf{j}-8 \mathbf{k} \text { and } \mathbf{v}(t)=e^{t} \mathbf{i}+2 e^{-t} \mathbf{j}-e^{2 t} \mathbf{k}$$ Compute the derivative of the following functions. $$\mathbf{u}(t) \cdot \mathbf{v}(t)$$

Direction angles and cosines Let \(\mathbf{v}=\langle a, b, c\rangle\) and let \(\alpha, \beta\) and \(\gamma\) be the angles between \(\mathbf{v}\) and the positive \(x\) -axis, the positive \(y\) -axis, and the positive \(z\) -axis, respectively (see figure). a. Prove that \(\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1\) b. Find a vector that makes a \(45^{\circ}\) angle with \(\mathbf{i}\) and \(\mathbf{j}\). What angle does it make with \(\mathbf{k} ?\) c. Find a vector that makes a \(60^{\circ}\) angle with i and \(\mathbf{j}\). What angle does it make with k? d. Is there a vector that makes a \(30^{\circ}\) angle with \(\mathbf{i}\) and \(\mathbf{j} ?\) Explain. e. Find a vector \(\mathbf{v}\) such that \(\alpha=\beta=\gamma .\) What is the angle?

Prove the following vector properties using components. Then make a sketch to illustrate the property geometrically. Suppose \(\mathbf{u}, \mathbf{v},\) and \(\mathbf{w}\) are vectors in the \(x y\) -plane and a and \(c\) are scalars. $$(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$$

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free