Chapter 11: Problem 52
Compute the indefinite integral of the following functions. $$\mathbf{r}(t)=2^{t} \mathbf{i}+\frac{1}{1+2 t} \mathbf{j}+\ln t \mathbf{k}$$
Chapter 11: Problem 52
Compute the indefinite integral of the following functions. $$\mathbf{r}(t)=2^{t} \mathbf{i}+\frac{1}{1+2 t} \mathbf{j}+\ln t \mathbf{k}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeCompute \(\mathbf{r}^{\prime \prime}(t)\) and \(\mathbf{r}^{\prime \prime \prime}(t)\) for the following functions. $$\mathbf{r}(t)=\left\langle 3 t^{12}-t^{2}, t^{8}+t^{3}, t^{-4}-2\right\rangle$$
Relationship between \(\mathbf{r}\) and \(\mathbf{r}^{\prime}\) Consider the curve \(\mathbf{r}(t)=\langle\sqrt{t}, 1, t\rangle,\) for \(t>0 .\) Find all points on the curve at which \(\mathbf{r}\) and \(\mathbf{r}^{\prime}\) are orthogonal.
Relationship between \(\mathbf{r}\) and \(\mathbf{r}^{\prime}\)
Consider the helix \(\mathbf{r}(t)=\langle\cos t, \sin t, t\rangle,\) for
\(-\infty
Cusps and noncusps a. Graph the curve \(\mathbf{r}(t)=\left\langle t^{3}, t^{3}\right\rangle .\) Show that \(\mathbf{r}^{\prime}(0)=\mathbf{0}\) and the curve does not have a cusp at \(t=0 .\) Explain. b. Graph the curve \(\mathbf{r}(t)=\left\langle t^{3}, t^{2}\right\rangle .\) Show that \(\mathbf{r}^{\prime}(0)=\mathbf{0}\) and the curve has a cusp at \(t=0 .\) Explain. c. The functions \(\mathbf{r}(t)=\left\langle t, t^{2}\right\rangle\) and \(\mathbf{p}(t)=\left\langle t^{2}, t^{4}\right\rangle\) both satisfy \(y=x^{2} .\) Explain how the curves they parameterize are different. d. Consider the curve \(\mathbf{r}(t)=\left\langle t^{m}, t^{n}\right\rangle,\) where \(m>1\) and \(n>1\) are integers with no common factors. Is it true that the curve has a cusp at \(t=0\) if one (not both) of \(m\) and \(n\) is even? Explain.
Compute the indefinite integral of the following functions. $$\mathbf{r}(t)=t e^{t} \mathbf{i}+t \sin t^{2} \mathbf{j}-\frac{2 t}{\sqrt{t^{2}+4}} \mathbf{k}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.