Chapter 11: Problem 51
Compute the indefinite integral of the following functions. $$\mathbf{r}(t)=e^{3 t} \mathbf{i}+\frac{1}{1+t^{2}} \mathbf{j}-\frac{1}{\sqrt{2 t}} \mathbf{k}$$
Chapter 11: Problem 51
Compute the indefinite integral of the following functions. $$\mathbf{r}(t)=e^{3 t} \mathbf{i}+\frac{1}{1+t^{2}} \mathbf{j}-\frac{1}{\sqrt{2 t}} \mathbf{k}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeSuppose the vector-valued function \(\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle\) is smooth on an interval containing the point \(t_{0} .\) The line tangent to \(\mathbf{r}(t)\) at \(t=t_{0}\) is the line parallel to the tangent vector \(\mathbf{r}^{\prime}\left(t_{0}\right)\) that passes through \(\left(f\left(t_{0}\right), g\left(t_{0}\right), h\left(t_{0}\right)\right) .\) For each of the following functions, find an equation of the line tangent to the curve at \(t=t_{0} .\) Choose an orientation for the line that is the same as the direction of \(\mathbf{r}^{\prime}\). $$\mathbf{r}(t)=\langle\sqrt{2 t+1}, \sin \pi t, 4\rangle ; t_{0}=4$$
Consider the curve \(\mathbf{r}(t)=(a \cos t+b \sin t) \mathbf{i}+(c \cos t+d \sin t) \mathbf{j}+(e \cos t+f \sin t) \mathbf{k}\) where \(a, b, c, d, e,\) and \(f\) are real numbers. It can be shown that this curve lies in a plane. Assuming the curve lies in a plane, show that it is a circle centered at the origin with radius \(R\) provided \(a^{2}+c^{2}+e^{2}=b^{2}+d^{2}+f^{2}=R^{2}\) and \(a b+c d+e f=0\).
Suppose the vector-valued function \(\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle\) is smooth on an interval containing the point \(t_{0} .\) The line tangent to \(\mathbf{r}(t)\) at \(t=t_{0}\) is the line parallel to the tangent vector \(\mathbf{r}^{\prime}\left(t_{0}\right)\) that passes through \(\left(f\left(t_{0}\right), g\left(t_{0}\right), h\left(t_{0}\right)\right) .\) For each of the following functions, find an equation of the line tangent to the curve at \(t=t_{0} .\) Choose an orientation for the line that is the same as the direction of \(\mathbf{r}^{\prime}\). $$\mathbf{r}(t)=\langle 2+\cos t, 3+\sin 2 t, t\rangle ; t_{0}=\pi / 2$$
Cauchy-Schwarz Inequality The definition \(\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta\) implies that \(|\mathbf{u} \cdot \mathbf{v}| \leq|\mathbf{u}||\mathbf{v}|\) (because \(|\cos \theta| \leq 1\) ). This inequality, known as the Cauchy-Schwarz Inequality, holds in any number of dimensions and has many consequences. What conditions on \(\mathbf{u}\) and \(\mathbf{v}\) lead to equality in the CauchySchwarz Inequality?
Let \(\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle\). a. Assume that \(\lim \mathbf{r}(t)=\mathbf{L}=\left\langle L_{1}, L_{2}, L_{3}\right\rangle,\) which means that \(\lim _{t \rightarrow a}|\mathbf{r}(t)-\mathbf{L}|=0 .\) Prove that \(\lim _{t \rightarrow a} f(t)=L_{1}, \quad \lim _{t \rightarrow a} g(t)=L_{2}, \quad\) and \(\quad \lim _{t \rightarrow a} h(t)=L_{3}\). b. Assume that \(\lim _{t \rightarrow a} f(t)=L_{1}, \lim _{t \rightarrow a} g(t)=L_{2},\) and \(\lim _{t \rightarrow a} h(t)=L_{3} .\) Prove that \(\lim _{t \rightarrow a} \mathbf{r}(t)=\mathbf{L}=\left\langle L_{1}, L_{2}, L_{3}\right\rangle\) which means that \(\lim _{t \rightarrow a}|\mathbf{r}(t)-\mathbf{L}|=0\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.