Chapter 11: Problem 50
Compute the indefinite integral of the following functions. $$\mathbf{r}(t)=t e^{t} \mathbf{i}+t \sin t^{2} \mathbf{j}-\frac{2 t}{\sqrt{t^{2}+4}} \mathbf{k}$$
Chapter 11: Problem 50
Compute the indefinite integral of the following functions. $$\mathbf{r}(t)=t e^{t} \mathbf{i}+t \sin t^{2} \mathbf{j}-\frac{2 t}{\sqrt{t^{2}+4}} \mathbf{k}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeCauchy-Schwarz Inequality The definition \(\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta\) implies that \(|\mathbf{u} \cdot \mathbf{v}| \leq|\mathbf{u}||\mathbf{v}|\) (because \(|\cos \theta| \leq 1\) ). This inequality, known as the Cauchy-Schwarz Inequality, holds in any number of dimensions and has many consequences. What conditions on \(\mathbf{u}\) and \(\mathbf{v}\) lead to equality in the CauchySchwarz Inequality?
Suppose the vector-valued function \(\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle\) is smooth on an interval containing the point \(t_{0} .\) The line tangent to \(\mathbf{r}(t)\) at \(t=t_{0}\) is the line parallel to the tangent vector \(\mathbf{r}^{\prime}\left(t_{0}\right)\) that passes through \(\left(f\left(t_{0}\right), g\left(t_{0}\right), h\left(t_{0}\right)\right) .\) For each of the following functions, find an equation of the line tangent to the curve at \(t=t_{0} .\) Choose an orientation for the line that is the same as the direction of \(\mathbf{r}^{\prime}\). $$\mathbf{r}(t)=\left\langle e^{t}, e^{2 t}, e^{3 t}\right\rangle ; t_{0}=0$$
Properties of dot products Let \(\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle\) \(\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle,\) and \(\mathbf{w}=\left\langle w_{1}, w_{2}, w_{3}\right\rangle .\) Prove the following vector properties, where \(c\) is a scalar. $$\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$$
Proof of Product Rule By expressing \(\mathbf{u}\) in terms of its components, prove that $$\frac{d}{d t}(f(t) \mathbf{u}(t))=f^{\prime}(t) \mathbf{u}(t)+f(t) \mathbf{u}^{\prime}(t)$$
Consider the curve \(\mathbf{r}(t)=(a \cos t+b \sin t) \mathbf{i}+(c \cos t+d \sin t) \mathbf{j}+(e \cos t+f \sin t) \mathbf{k}\) where \(a, b, c, d, e,\) and \(f\) are real numbers. It can be shown that this curve lies in a plane. Find a general expression for a nonzero vector orthogonal to the plane containing the curve. $$\begin{aligned}\mathbf{r}(t)=&(a \cos t+b \sin t) \mathbf{i}+(c \cos t+d \sin t) \mathbf{j} \\ &+(e \cos t+f \sin t) \mathbf{k},\end{aligned}$$ where \(\langle a, c, e\rangle \times\langle b, d, f\rangle \neq \mathbf{0}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.