Chapter 11: Problem 47
Compute the indefinite integral of the following functions. $$\mathbf{r}(t)=\left\langle t^{4}-3 t, 2 t-1,10\right\rangle$$
Chapter 11: Problem 47
Compute the indefinite integral of the following functions. $$\mathbf{r}(t)=\left\langle t^{4}-3 t, 2 t-1,10\right\rangle$$
All the tools & learning materials you need for study success - in one app.
Get started for freeRelationship between \(\mathbf{r}\) and \(\mathbf{r}^{\prime}\) Consider the ellipse \(\mathbf{r}(t)=\langle 2 \cos t, 8 \sin t, 0\rangle,\) for \(0 \leq t \leq 2 \pi\) Find all points on the ellipse at which \(\mathbf{r}\) and \(\mathbf{r}^{\prime}\) are orthogonal.
Prove that \(|c \mathbf{v}|=|c||\mathbf{v}|,\) where \(c\) is a scalar and \(\mathbf{v}\) is a vector.
Properties of dot products Let \(\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle\) \(\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle,\) and \(\mathbf{w}=\left\langle w_{1}, w_{2}, w_{3}\right\rangle .\) Prove the following vector properties, where \(c\) is a scalar. $$c(\mathbf{u} \cdot \mathbf{v})=(c \mathbf{u}) \cdot \mathbf{v}=\mathbf{u} \cdot(c \mathbf{v})$$
An object moves along a path given by \(\mathbf{r}(t)=\langle a \cos t+b \sin t, c \cos t+d \sin t\rangle, \quad\) for \(0 \leq t \leq 2 \pi\) a. What conditions on \(a, b, c,\) and \(d\) guarantee that the path is a circle? b. What conditions on \(a, b, c,\) and \(d\) guarantee that the path is an ellipse?
Evaluate the following definite integrals. $$\int_{0}^{2} t e^{t}(\mathbf{i}+2 \mathbf{j}-\mathbf{k}) d t$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.