Chapter 11: Problem 46
Compute \(\mathbf{r}^{\prime \prime}(t)\) and \(\mathbf{r}^{\prime \prime \prime}(t)\) for the following functions. $$\mathbf{r}(t)=\tan t \mathbf{i}+\left(t+\frac{1}{t}\right) \mathbf{j}-\ln (t+1) \mathbf{k}$$
Chapter 11: Problem 46
Compute \(\mathbf{r}^{\prime \prime}(t)\) and \(\mathbf{r}^{\prime \prime \prime}(t)\) for the following functions. $$\mathbf{r}(t)=\tan t \mathbf{i}+\left(t+\frac{1}{t}\right) \mathbf{j}-\ln (t+1) \mathbf{k}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeProve the following vector properties using components. Then make a sketch to illustrate the property geometrically. Suppose \(\mathbf{u}, \mathbf{v},\) and \(\mathbf{w}\) are vectors in the \(x y\) -plane and a and \(c\) are scalars. $$\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$$
Let $$\mathbf{u}(t)=2 t^{3} \mathbf{i}+\left(t^{2}-1\right) \mathbf{j}-8 \mathbf{k} \text { and } \mathbf{v}(t)=e^{t} \mathbf{i}+2 e^{-t} \mathbf{j}-e^{2 t} \mathbf{k}$$ Compute the derivative of the following functions. $$\mathbf{u}(t) \times \mathbf{v}(t)$$
Evaluate the following definite integrals. $$\int_{-1}^{1}\left(\mathbf{i}+t \mathbf{j}+3 t^{2} \mathbf{k}\right) d t$$
Prove the following vector properties using components. Then make a sketch to illustrate the property geometrically. Suppose \(\mathbf{u}, \mathbf{v},\) and \(\mathbf{w}\) are vectors in the \(x y\) -plane and a and \(c\) are scalars. $$(a+c) \mathbf{v}=a \mathbf{v}+c \mathbf{v}$$
Relationship between \(\mathbf{r}\) and \(\mathbf{r}^{\prime}\)
Consider the parabola \(\mathbf{r}(t)=\left\langle a t^{2}+1, t\right\rangle,\)
for \(-\infty
What do you think about this solution?
We value your feedback to improve our textbook solutions.