Chapter 11: Problem 44
Compute \(\mathbf{r}^{\prime \prime}(t)\) and \(\mathbf{r}^{\prime \prime \prime}(t)\) for the following functions. $$\mathbf{r}(t)=\left\langle e^{4 t}, 2 e^{-4 t}+1,2 e^{-t}\right\rangle$$
Chapter 11: Problem 44
Compute \(\mathbf{r}^{\prime \prime}(t)\) and \(\mathbf{r}^{\prime \prime \prime}(t)\) for the following functions. $$\mathbf{r}(t)=\left\langle e^{4 t}, 2 e^{-4 t}+1,2 e^{-t}\right\rangle$$
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider the curve \(\mathbf{r}(t)=(a \cos t+b \sin t) \mathbf{i}+(c \cos t+d \sin t) \mathbf{j}+(e \cos t+f \sin t) \mathbf{k}\) where \(a, b, c, d, e,\) and \(f\) are real numbers. It can be shown that this curve lies in a plane. Graph the following curve and describe it. $$\begin{aligned}\mathbf{r}(t)=&(2 \cos t+2 \sin t) \mathbf{i}+(-\cos t+2 \sin t) \mathbf{j} \\\&+(\cos t-2 \sin t) \mathbf{k}\end{aligned}$$
Compute the indefinite integral of the following functions. $$\mathbf{r}(t)=\left\langle t^{4}-3 t, 2 t-1,10\right\rangle$$
Relationship between \(\mathbf{r}\) and \(\mathbf{r}^{\prime}\) Consider the curve \(\mathbf{r}(t)=\langle\sqrt{t}, 1, t\rangle,\) for \(t>0 .\) Find all points on the curve at which \(\mathbf{r}\) and \(\mathbf{r}^{\prime}\) are orthogonal.
Cauchy-Schwarz Inequality The definition \(\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta\) implies that \(|\mathbf{u} \cdot \mathbf{v}| \leq|\mathbf{u}||\mathbf{v}|\) (because \(|\cos \theta| \leq 1\) ). This inequality, known as the Cauchy-Schwarz Inequality, holds in any number of dimensions and has many consequences. Algebra inequality Show that $$\left(u_{1}+u_{2}+u_{3}\right)^{2} \leq 3\left(u_{1}^{2}+u_{2}^{2}+u_{3}^{2}\right)$$ for any real numbers \(u_{1}, u_{2},\) and \(u_{3} .\) (Hint: Use the CauchySchwarz Inequality in three dimensions with \(\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle\) and choose v in the right way.)
Motion on a sphere Prove that \(\mathbf{r}\) describes a curve that lies on the surface of a sphere centered at the origin \(\left(x^{2}+y^{2}+z^{2}=a^{2}\right.\) with \(a \geq 0\) ) if and only if \(\mathbf{r}\) and \(\mathbf{r}^{\prime}\) are orthogonal at all points of the curve.
What do you think about this solution?
We value your feedback to improve our textbook solutions.