Chapter 11: Problem 43
Compute \(\mathbf{r}^{\prime \prime}(t)\) and \(\mathbf{r}^{\prime \prime \prime}(t)\) for the following functions. $$\mathbf{r}(t)=\langle\cos 3 t, \sin 4 t, \cos 6 t\rangle$$
Chapter 11: Problem 43
Compute \(\mathbf{r}^{\prime \prime}(t)\) and \(\mathbf{r}^{\prime \prime \prime}(t)\) for the following functions. $$\mathbf{r}(t)=\langle\cos 3 t, \sin 4 t, \cos 6 t\rangle$$
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following definite integrals. $$\int_{1 / 2}^{1}\left(\frac{3}{1+2 t} \mathbf{i}-\pi \csc ^{2}\left(\frac{\pi}{2} t\right) \mathbf{k}\right) d t$$
Relationship between \(\mathbf{r}\) and \(\mathbf{r}^{\prime}\)
Consider the helix \(\mathbf{r}(t)=\langle\cos t, \sin t, t\rangle,\) for
\(-\infty
Cauchy-Schwarz Inequality The definition \(\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta\) implies that \(|\mathbf{u} \cdot \mathbf{v}| \leq|\mathbf{u}||\mathbf{v}|\) (because \(|\cos \theta| \leq 1\) ). This inequality, known as the Cauchy-Schwarz Inequality, holds in any number of dimensions and has many consequences. Verify that the Cauchy-Schwarz Inequality holds for \(\mathbf{u}=\langle 3,-5,6\rangle\) and \(\mathbf{v}=\langle-8,3,1\rangle\)
Evaluate the following definite integrals. $$\int_{0}^{\ln 2}\left(e^{-t} \mathbf{i}+2 e^{2 t} \mathbf{j}-4 e^{t} \mathbf{k}\right) d t$$
Use the formula in Exercise 79 to find the (least) distance between the given point \(Q\) and line \(\mathbf{r}\). $$Q(5,6,1) ; \mathbf{r}(t)=\langle 1+3 t, 3-4 t, t+1\rangle$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.