Chapter 11: Problem 42
Compute \(\mathbf{r}^{\prime \prime}(t)\) and \(\mathbf{r}^{\prime \prime \prime}(t)\) for the following functions. $$\mathbf{r}(t)=\left\langle 3 t^{12}-t^{2}, t^{8}+t^{3}, t^{-4}-2\right\rangle$$
Chapter 11: Problem 42
Compute \(\mathbf{r}^{\prime \prime}(t)\) and \(\mathbf{r}^{\prime \prime \prime}(t)\) for the following functions. $$\mathbf{r}(t)=\left\langle 3 t^{12}-t^{2}, t^{8}+t^{3}, t^{-4}-2\right\rangle$$
All the tools & learning materials you need for study success - in one app.
Get started for freeCauchy-Schwarz Inequality The definition \(\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta\) implies that \(|\mathbf{u} \cdot \mathbf{v}| \leq|\mathbf{u}||\mathbf{v}|\) (because \(|\cos \theta| \leq 1\) ). This inequality, known as the Cauchy-Schwarz Inequality, holds in any number of dimensions and has many consequences. Triangle Inequality Consider the vectors \(\mathbf{u}, \mathbf{v},\) and \(\mathbf{u}+\mathbf{v}\) (in any number of dimensions). Use the following steps to prove that \(|\mathbf{u}+\mathbf{v}| \leq|\mathbf{u}|+|\mathbf{v}|\) a. Show that \(|\mathbf{u}+\mathbf{v}|^{2}=(\mathbf{u}+\mathbf{v}) \cdot(\mathbf{u}+\mathbf{v})=|\mathbf{u}|^{2}+\) \(2 \mathbf{u} \cdot \mathbf{v}+|\mathbf{v}|^{2}\) b. Use the Cauchy-Schwarz Inequality to show that \(|\mathbf{u}+\mathbf{v}|^{2} \leq(|\mathbf{u}|+|\mathbf{v}|)^{2}\) c. Conclude that \(|\mathbf{u}+\mathbf{v}| \leq|\mathbf{u}|+|\mathbf{v}|\) d. Interpret the Triangle Inequality geometrically in \(\mathbb{R}^{2}\) or \(\mathbb{R}^{3}\).
Let \(\mathbf{u}(t)=\left\langle 1, t, t^{2}\right\rangle, \mathbf{v}(t)=\left\langle t^{2},-2 t, 1\right\rangle\) and \(g(t)=2 \sqrt{t}\). Compute the derivatives of the following functions. $$\mathbf{u}(t) \times \mathbf{v}(t)$$
Cusps and noncusps a. Graph the curve \(\mathbf{r}(t)=\left\langle t^{3}, t^{3}\right\rangle .\) Show that \(\mathbf{r}^{\prime}(0)=\mathbf{0}\) and the curve does not have a cusp at \(t=0 .\) Explain. b. Graph the curve \(\mathbf{r}(t)=\left\langle t^{3}, t^{2}\right\rangle .\) Show that \(\mathbf{r}^{\prime}(0)=\mathbf{0}\) and the curve has a cusp at \(t=0 .\) Explain. c. The functions \(\mathbf{r}(t)=\left\langle t, t^{2}\right\rangle\) and \(\mathbf{p}(t)=\left\langle t^{2}, t^{4}\right\rangle\) both satisfy \(y=x^{2} .\) Explain how the curves they parameterize are different. d. Consider the curve \(\mathbf{r}(t)=\left\langle t^{m}, t^{n}\right\rangle,\) where \(m>1\) and \(n>1\) are integers with no common factors. Is it true that the curve has a cusp at \(t=0\) if one (not both) of \(m\) and \(n\) is even? Explain.
Properties of dot products Let \(\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle\) \(\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle,\) and \(\mathbf{w}=\left\langle w_{1}, w_{2}, w_{3}\right\rangle .\) Prove the following vector properties, where \(c\) is a scalar. $$|\mathbf{u} \cdot \mathbf{v}| \leq|\mathbf{u} \| \mathbf{v}|$$
Show that two nonzero vectors \(\mathbf{u}=\left\langle u_{1}, u_{2}\right\rangle\) and \(\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle\) are perpendicular to each other if \(u_{1} v_{1}+u_{2} v_{2}=0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.