Chapter 11: Problem 41
Compute \(\mathbf{r}^{\prime \prime}(t)\) and \(\mathbf{r}^{\prime \prime \prime}(t)\) for the following functions. $$\mathbf{r}(t)=\left\langle t^{2}+1, t+1,1\right\rangle$$
Chapter 11: Problem 41
Compute \(\mathbf{r}^{\prime \prime}(t)\) and \(\mathbf{r}^{\prime \prime \prime}(t)\) for the following functions. $$\mathbf{r}(t)=\left\langle t^{2}+1, t+1,1\right\rangle$$
All the tools & learning materials you need for study success - in one app.
Get started for freeProof of Sum Rule By expressing \(\mathbf{u}\) and \(\mathbf{v}\) in terms of their components, prove that $$\frac{d}{d t}(\mathbf{u}(t)+\mathbf{v}(t))=\mathbf{u}^{\prime}(t)+\mathbf{v}^{\prime}(t)$$
Find the function \(\mathbf{r}\) that satisfies the given conditions. $$\mathbf{r}^{\prime}(t)=\langle\sqrt{t}, \cos \pi t, 4 / t\rangle ; \mathbf{r}(1)=\langle 2,3,4\rangle$$
Properties of dot products Let \(\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle\) \(\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle,\) and \(\mathbf{w}=\left\langle w_{1}, w_{2}, w_{3}\right\rangle .\) Prove the following vector properties, where \(c\) is a scalar. $$\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$$
Prove or disprove For fixed values of \(a, b, c,\) and \(d,\) the value of proj \(_{(k a, k b)}\langle c, d\rangle\) is constant for all nonzero values of \(k,\) for \(\langle a, b\rangle \neq\langle 0,0\rangle\).
Let \(\mathbf{u}=\langle a, 5\rangle\) and \(\mathbf{v}=\langle 2,6\rangle\) a. Find the value of \(a\) such that \(\mathbf{u}\) is parallel to \(\mathbf{v}\) b. Find the value of \(a\) such that \(\mathbf{u}\) is perpendicular to \(\mathbf{v}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.