Chapter 11: Problem 40
Consider the following trajectories of moving objects. Find the tangential and normal components of the acceleration. $$\mathbf{r}(t)=\langle 20 \cos t, 20 \sin t, 30 t\rangle$$
Chapter 11: Problem 40
Consider the following trajectories of moving objects. Find the tangential and normal components of the acceleration. $$\mathbf{r}(t)=\langle 20 \cos t, 20 \sin t, 30 t\rangle$$
All the tools & learning materials you need for study success - in one app.
Get started for freeCauchy-Schwarz Inequality The definition \(\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta\) implies that \(|\mathbf{u} \cdot \mathbf{v}| \leq|\mathbf{u}||\mathbf{v}|\) (because \(|\cos \theta| \leq 1\) ). This inequality, known as the Cauchy-Schwarz Inequality, holds in any number of dimensions and has many consequences. Algebra inequality Show that $$\left(u_{1}+u_{2}+u_{3}\right)^{2} \leq 3\left(u_{1}^{2}+u_{2}^{2}+u_{3}^{2}\right)$$ for any real numbers \(u_{1}, u_{2},\) and \(u_{3} .\) (Hint: Use the CauchySchwarz Inequality in three dimensions with \(\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle\) and choose v in the right way.)
Relationship between \(\mathbf{r}\) and \(\mathbf{r}^{\prime}\) Consider the circle \(\mathbf{r}(t)=\langle a \cos t, a \sin t\rangle,\) for \(0 \leq t \leq 2 \pi\) where \(a\) is a positive real number. Compute \(\mathbf{r}^{\prime}\) and show that it is orthogonal to \(\mathbf{r}\) for all \(t\)
Show that the (least) distance \(d\) between a point \(Q\) and a line \(\mathbf{r}=\mathbf{r}_{0}+t \mathbf{v}\) (both in \(\mathbb{R}^{3}\) ) is \(d=\frac{|\overrightarrow{P Q} \times \mathbf{v}|}{|\mathbf{v}|},\) where \(P\) is a point on the line.
Find the function \(\mathbf{r}\) that satisfies the given conditions. $$\mathbf{r}^{\prime}(t)=\frac{t}{t^{2}+1} \mathbf{i}+t e^{-t^{2}} \mathbf{j}-\frac{2 t}{\sqrt{t^{2}+4}} \mathbf{k} ; \mathbf{r}(0)=\mathbf{i}+\frac{3}{2} \mathbf{j}-3 \mathbf{k}$$
Properties of dot products Let \(\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle\) \(\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle,\) and \(\mathbf{w}=\left\langle w_{1}, w_{2}, w_{3}\right\rangle .\) Prove the following vector properties, where \(c\) is a scalar. $$\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.