Chapter 11: Problem 4
Compute \(\mathbf{r}^{\prime \prime}(t)\) when \(\mathbf{r}(t)=\left\langle t^{10}, 8 t, \cos t\right\rangle\)
Chapter 11: Problem 4
Compute \(\mathbf{r}^{\prime \prime}(t)\) when \(\mathbf{r}(t)=\left\langle t^{10}, 8 t, \cos t\right\rangle\)
All the tools & learning materials you need for study success - in one app.
Get started for freeLet $$\mathbf{u}(t)=2 t^{3} \mathbf{i}+\left(t^{2}-1\right) \mathbf{j}-8 \mathbf{k} \text { and } \mathbf{v}(t)=e^{t} \mathbf{i}+2 e^{-t} \mathbf{j}-e^{2 t} \mathbf{k}$$ Compute the derivative of the following functions. $$\mathbf{v}(\sqrt{t})$$
Jack pulls east on a rope attached to a camel with a force of 40 ib. Jill pulls north on a rope attached to the same camel with a force of 30 Ib. What is the magnitude and direction of the force on the camel? Assume the vectors lie in a horizontal plane.
Suppose the vector-valued function \(\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle\) is smooth on an interval containing the point \(t_{0} .\) The line tangent to \(\mathbf{r}(t)\) at \(t=t_{0}\) is the line parallel to the tangent vector \(\mathbf{r}^{\prime}\left(t_{0}\right)\) that passes through \(\left(f\left(t_{0}\right), g\left(t_{0}\right), h\left(t_{0}\right)\right) .\) For each of the following functions, find an equation of the line tangent to the curve at \(t=t_{0} .\) Choose an orientation for the line that is the same as the direction of \(\mathbf{r}^{\prime}\). $$\mathbf{r}(t)=\left\langle e^{t}, e^{2 t}, e^{3 t}\right\rangle ; t_{0}=0$$
Let \(\mathbf{u}(t)=\left\langle 1, t, t^{2}\right\rangle, \mathbf{v}(t)=\left\langle t^{2},-2 t, 1\right\rangle\) and \(g(t)=2 \sqrt{t}\). Compute the derivatives of the following functions. $$\mathbf{u}(t) \times \mathbf{v}(t)$$
Let $$\mathbf{u}(t)=2 t^{3} \mathbf{i}+\left(t^{2}-1\right) \mathbf{j}-8 \mathbf{k} \text { and } \mathbf{v}(t)=e^{t} \mathbf{i}+2 e^{-t} \mathbf{j}-e^{2 t} \mathbf{k}$$ Compute the derivative of the following functions. $$\mathbf{u}(t) \cdot \mathbf{v}(t)$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.