Chapter 11: Problem 39
Calculate the work done in the following situations. A sled is pulled \(10 \mathrm{m}\) along horizontal ground with a constant force of \(5 \mathrm{N}\) at an angle of \(45^{\circ}\) above the horizontal.
Chapter 11: Problem 39
Calculate the work done in the following situations. A sled is pulled \(10 \mathrm{m}\) along horizontal ground with a constant force of \(5 \mathrm{N}\) at an angle of \(45^{\circ}\) above the horizontal.
All the tools & learning materials you need for study success - in one app.
Get started for freeCompute \(\mathbf{r}^{\prime \prime}(t)\) and \(\mathbf{r}^{\prime \prime \prime}(t)\) for the following functions. $$\mathbf{r}(t)=\sqrt{t+4} \mathbf{i}+\frac{t}{t+1} \mathbf{j}-e^{-t^{2}} \mathbf{k}$$
Find the function \(\mathbf{r}\) that satisfies the given conditions. $$\mathbf{r}^{\prime}(t)=\langle\sqrt{t}, \cos \pi t, 4 / t\rangle ; \mathbf{r}(1)=\langle 2,3,4\rangle$$
Evaluate the following definite integrals. $$\int_{-\pi}^{\pi}(\sin t \mathbf{i}+\cos t \mathbf{j}+2 t \mathbf{k}) d t$$
Prove or disprove For fixed values of \(a, b, c,\) and \(d,\) the value of proj \(_{(k a, k b)}\langle c, d\rangle\) is constant for all nonzero values of \(k,\) for \(\langle a, b\rangle \neq\langle 0,0\rangle\).
Explain why or why not Determine whether the following statements are true and
give an explanation or counterexample.
a. The vectors \(\mathbf{r}(t)\) and \(\mathbf{r}^{\prime}(t)\) are parallel for
all values of \(t\) in the domain.
b. The curve described by the function \(\mathbf{r}(t)=\left\langle t, t^{2}-2
t, \cos \pi t\right\rangle\)
is smooth, for \(-\infty
What do you think about this solution?
We value your feedback to improve our textbook solutions.