Chapter 11: Problem 38
Consider the following trajectories of moving objects. Find the tangential and normal components of the acceleration. $$\mathbf{r}(t)=\left\langle t, t^{2}+1\right\rangle$$
Chapter 11: Problem 38
Consider the following trajectories of moving objects. Find the tangential and normal components of the acceleration. $$\mathbf{r}(t)=\left\langle t, t^{2}+1\right\rangle$$
All the tools & learning materials you need for study success - in one app.
Get started for freeUse vectors to show that the midpoint of the line segment joining \(P\left(x_{1}, y_{1}\right)\) and \(Q\left(x_{2}, y_{2}\right)\) is the point \(\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)\) (Hint: Let \(O\) be the origin and let \(M\) be the midpoint of \(P Q\). Draw a picture and show that $$\left.\overrightarrow{O M}=\overrightarrow{O P}+\frac{1}{2} \overrightarrow{P Q}=\overrightarrow{O P}+\frac{1}{2}(\overrightarrow{O Q}-\overrightarrow{O P}) \cdot\right)$$
Properties of dot products Let \(\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle\) \(\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle,\) and \(\mathbf{w}=\left\langle w_{1}, w_{2}, w_{3}\right\rangle .\) Prove the following vector properties, where \(c\) is a scalar. $$\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$$
Use the formula in Exercise 79 to find the (least) distance between the given point \(Q\) and line \(\mathbf{r}\). $$Q(6,6,7), \mathbf{r}(t)=\langle 3 t,-3 t, 4\rangle$$
Let \(\mathbf{u}(t)=\left\langle 1, t, t^{2}\right\rangle, \mathbf{v}(t)=\left\langle t^{2},-2 t, 1\right\rangle\) and \(g(t)=2 \sqrt{t}\). Compute the derivatives of the following functions. $$\mathbf{v}(g(t))$$
Properties of dot products Let \(\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle\) \(\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle,\) and \(\mathbf{w}=\left\langle w_{1}, w_{2}, w_{3}\right\rangle .\) Prove the following vector properties, where \(c\) is a scalar. $$\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.