Chapter 11: Problem 37
Find a vector orthogonal to the given vectors. $$\langle 8,0,4\rangle \text { and }\langle-8,2,1\rangle$$
Chapter 11: Problem 37
Find a vector orthogonal to the given vectors. $$\langle 8,0,4\rangle \text { and }\langle-8,2,1\rangle$$
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following definite integrals. $$\int_{0}^{\pi / 4}\left(\sec ^{2} t \mathbf{i}-2 \cos t \mathbf{j}-\mathbf{k}\right) d t$$
A pair of nonzero vectors in the plane is linearly dependent if one vector is a scalar multiple of the other. Otherwise, the pair is linearly independent. a. Which pairs of the following vectors are linearly dependent and which are linearly independent: \(\mathbf{u}=\langle 2,-3\rangle\) \(\mathbf{v}=\langle-12,18\rangle,\) and \(\mathbf{w}=\langle 4,6\rangle ?\) b. Geometrically, what does it mean for a pair of nonzero vectors in the plane to be linearly dependent? Linearly independent? c. Prove that if a pair of vectors \(\mathbf{u}\) and \(\mathbf{v}\) is linearly independent, then given any vector \(w\), there are constants \(c_{1}\) and \(c_{2}\) such that \(\mathbf{w}=c_{1} \mathbf{u}+c_{2} \mathbf{v}\)
Let $$\mathbf{u}(t)=2 t^{3} \mathbf{i}+\left(t^{2}-1\right) \mathbf{j}-8 \mathbf{k} \text { and } \mathbf{v}(t)=e^{t} \mathbf{i}+2 e^{-t} \mathbf{j}-e^{2 t} \mathbf{k}$$ Compute the derivative of the following functions. $$\mathbf{u}(t) \times \mathbf{v}(t)$$
Find the function \(\mathbf{r}\) that satisfies the given conditions. $$\mathbf{r}^{\prime}(t)=\langle 0,2,2 t\rangle ; \mathbf{r}(1)=\langle 4,3,-5\rangle$$
Cauchy-Schwarz Inequality The definition \(\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta\) implies that \(|\mathbf{u} \cdot \mathbf{v}| \leq|\mathbf{u}||\mathbf{v}|\) (because \(|\cos \theta| \leq 1\) ). This inequality, known as the Cauchy-Schwarz Inequality, holds in any number of dimensions and has many consequences. Geometric-arithmetic mean Use the vectors \(\mathbf{u}=\langle\sqrt{a}, \sqrt{b}\rangle\) and \(\mathbf{v}=\langle\sqrt{b}, \sqrt{a}\rangle\) to show that \(\sqrt{a b} \leq(a+b) / 2,\) where \(a \geq 0\) and \(b \geq 0\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.