Chapter 11: Problem 35
Find the length of the following polar curves. The complete cardioid \(r=4+4 \sin \theta\)
Chapter 11: Problem 35
Find the length of the following polar curves. The complete cardioid \(r=4+4 \sin \theta\)
All the tools & learning materials you need for study success - in one app.
Get started for freeCompute the following derivatives. $$\frac{d}{d t}\left(t^{2}(\mathbf{i}+2 \mathbf{j}-2 t \mathbf{k}) \cdot\left(e^{t} \mathbf{i}+2 e^{t} \mathbf{j}-3 e^{-t} \mathbf{k}\right)\right)$$
Cauchy-Schwarz Inequality The definition \(\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta\) implies that \(|\mathbf{u} \cdot \mathbf{v}| \leq|\mathbf{u}||\mathbf{v}|\) (because \(|\cos \theta| \leq 1\) ). This inequality, known as the Cauchy-Schwarz Inequality, holds in any number of dimensions and has many consequences. Geometric-arithmetic mean Use the vectors \(\mathbf{u}=\langle\sqrt{a}, \sqrt{b}\rangle\) and \(\mathbf{v}=\langle\sqrt{b}, \sqrt{a}\rangle\) to show that \(\sqrt{a b} \leq(a+b) / 2,\) where \(a \geq 0\) and \(b \geq 0\).
Properties of dot products Let \(\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle\) \(\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle,\) and \(\mathbf{w}=\left\langle w_{1}, w_{2}, w_{3}\right\rangle .\) Prove the following vector properties, where \(c\) is a scalar. $$c(\mathbf{u} \cdot \mathbf{v})=(c \mathbf{u}) \cdot \mathbf{v}=\mathbf{u} \cdot(c \mathbf{v})$$
Compute the indefinite integral of the following functions. $$\mathbf{r}(t)=e^{3 t} \mathbf{i}+\frac{1}{1+t^{2}} \mathbf{j}-\frac{1}{\sqrt{2 t}} \mathbf{k}$$
Compute \(\mathbf{r}^{\prime \prime}(t)\) and \(\mathbf{r}^{\prime \prime \prime}(t)\) for the following functions. $$\mathbf{r}(t)=\left\langle 3 t^{12}-t^{2}, t^{8}+t^{3}, t^{-4}-2\right\rangle$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.