Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

What is the magnitude of the cross product of two parallel vectors?

Short Answer

Expert verified
Answer: The magnitude of the cross product of two parallel vectors is always 0.

Step by step solution

01

Cross Product Definition

The cross product of two vectors A and B (written as A x B) is a vector that is perpendicular to both A and B. The magnitude of this vector is given by: |A x B| = |A| |B| sin(theta) where |A| and |B| are the magnitudes of A and B, respectively, and theta is the angle between A and B.
02

Parallel Vectors

When two vectors are parallel, the angle between them is either 0 or pi. This means they have the same (or opposite) direction, and their magnitudes are related by a constant factor: A = kB where k is a constant value.
03

Magnitude of Cross Product for Parallel Vectors

If A and B are parallel vectors, then the angle between them is either 0 (for the same direction) or pi (for the opposite direction). Using the formula from step 1: |A x B| = |A| |B| sin(theta) When theta = 0, sin(theta) = 0: |A x B| = |A| |B| sin(0) = |A| |B| (0) = 0 When theta = pi, sin(theta) = 0 as well: |A x B| = |A| |B| sin(pi) = |A| |B| (0) = 0 So, the magnitude of the cross product of two parallel vectors is always 0.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

An object moves along a path given by $$\mathbf{r}(t)=\langle a \cos t+b \sin t, c \cos t+d \sin t, e \cos t+f \sin t\rangle$$ for \(0 \leq t \leq 2 \pi\) a. Show that the curve described by \(\mathbf{r}\) lies in a plane. b. What conditions on \(a, b, c, d, e,\) and \(f\) guarantee that the curve described by \(\mathbf{r}\) is a circle?

Compute the indefinite integral of the following functions. $$\mathbf{r}(t)=\langle 2 \cos t, 2 \sin 3 t, 4 \cos 8 t\rangle$$

Explain why or why not Determine whether the following statements are true and give an explanation or counterexample. a. The vectors \(\mathbf{r}(t)\) and \(\mathbf{r}^{\prime}(t)\) are parallel for all values of \(t\) in the domain. b. The curve described by the function \(\mathbf{r}(t)=\left\langle t, t^{2}-2 t, \cos \pi t\right\rangle\) is smooth, for \(-\infty

Find the function \(\mathbf{r}\) that satisfies the given conditions. $$\mathbf{r}^{\prime}(t)=\langle\sqrt{t}, \cos \pi t, 4 / t\rangle ; \mathbf{r}(1)=\langle 2,3,4\rangle$$

A golfer launches a tee shot down a horizontal fairway; it follows a path given by \(\mathbf{r}(t)=\left\langle a t,(75-0.1 a) t,-5 t^{2}+80 t\right\rangle,\) where \(t \geq 0\) measures time in seconds and \(\mathbf{r}\) has units of feet. The \(y\) -axis points straight down the fairway and the \(z\) -axis points vertically upward. The parameter \(a\) is the slice factor that determines how much the shot deviates from a straight path down the fairway. a. With no slice \((a=0),\) sketch and describe the shot. How far does the ball travel horizontally (the distance between the point the ball leaves the ground and the point where it first strikes the ground)? b. With a slice \((a=0.2),\) sketch and describe the shot. How far does the ball travel horizontally? c. How far does the ball travel horizontally with \(a=2.5 ?\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free