Chapter 11: Problem 3
Given a tangent vector on an oriented curve, how do you find the unit tangent vector?
Chapter 11: Problem 3
Given a tangent vector on an oriented curve, how do you find the unit tangent vector?
All the tools & learning materials you need for study success - in one app.
Get started for freeCauchy-Schwarz Inequality The definition \(\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta\) implies that \(|\mathbf{u} \cdot \mathbf{v}| \leq|\mathbf{u}||\mathbf{v}|\) (because \(|\cos \theta| \leq 1\) ). This inequality, known as the Cauchy-Schwarz Inequality, holds in any number of dimensions and has many consequences. Verify that the Cauchy-Schwarz Inequality holds for \(\mathbf{u}=\langle 3,-5,6\rangle\) and \(\mathbf{v}=\langle-8,3,1\rangle\)
Prove the following vector properties using components. Then make a sketch to illustrate the property geometrically. Suppose \(\mathbf{u}, \mathbf{v},\) and \(\mathbf{w}\) are vectors in the \(x y\) -plane and a and \(c\) are scalars. $$a(c \mathbf{v})=(a c) \mathbf{v}$$
Compute the following derivatives. $$\frac{d}{d t}\left(\left(t^{3} \mathbf{i}-2 t \mathbf{j}-2 \mathbf{k}\right) \times\left(t \mathbf{i}-t^{2} \mathbf{j}-t^{3} \mathbf{k}\right)\right)$$
Let \(\mathbf{u}(t)=\left\langle 1, t, t^{2}\right\rangle, \mathbf{v}(t)=\left\langle t^{2},-2 t, 1\right\rangle\) and \(g(t)=2 \sqrt{t}\). Compute the derivatives of the following functions. $$\mathbf{u}(t) \cdot \mathbf{v}(t)$$
Compute the indefinite integral of the following functions. $$\mathbf{r}(t)=\left\langle t^{4}-3 t, 2 t-1,10\right\rangle$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.