Chapter 11: Problem 3
Express the arc length of a curve in terms of the speed of an object moving along the curve.
Chapter 11: Problem 3
Express the arc length of a curve in terms of the speed of an object moving along the curve.
All the tools & learning materials you need for study success - in one app.
Get started for freeSuppose the vector-valued function \(\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle\) is smooth on an interval containing the point \(t_{0} .\) The line tangent to \(\mathbf{r}(t)\) at \(t=t_{0}\) is the line parallel to the tangent vector \(\mathbf{r}^{\prime}\left(t_{0}\right)\) that passes through \(\left(f\left(t_{0}\right), g\left(t_{0}\right), h\left(t_{0}\right)\right) .\) For each of the following functions, find an equation of the line tangent to the curve at \(t=t_{0} .\) Choose an orientation for the line that is the same as the direction of \(\mathbf{r}^{\prime}\). $$\mathbf{r}(t)=\langle\sqrt{2 t+1}, \sin \pi t, 4\rangle ; t_{0}=4$$
Show that two nonzero vectors \(\mathbf{u}=\left\langle u_{1}, u_{2}\right\rangle\) and \(\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle\) are perpendicular to each other if \(u_{1} v_{1}+u_{2} v_{2}=0\)
Relationship between \(\mathbf{r}\) and \(\mathbf{r}^{\prime}\)
Consider the helix \(\mathbf{r}(t)=\langle\cos t, \sin t, t\rangle,\) for
\(-\infty
Evaluate the following definite integrals. $$\int_{1 / 2}^{1}\left(\frac{3}{1+2 t} \mathbf{i}-\pi \csc ^{2}\left(\frac{\pi}{2} t\right) \mathbf{k}\right) d t$$
Compute the indefinite integral of the following functions. $$\mathbf{r}(t)=\left\langle t^{4}-3 t, 2 t-1,10\right\rangle$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.