Chapter 11: Problem 3
Describe the plane \(x=4\)
Chapter 11: Problem 3
Describe the plane \(x=4\)
All the tools & learning materials you need for study success - in one app.
Get started for freeCompute \(\mathbf{r}^{\prime \prime}(t)\) and \(\mathbf{r}^{\prime \prime \prime}(t)\) for the following functions. $$\mathbf{r}(t)=\tan t \mathbf{i}+\left(t+\frac{1}{t}\right) \mathbf{j}-\ln (t+1) \mathbf{k}$$
Graph the curve \(\mathbf{r}(t)=\left\langle\frac{1}{2} \sin 2 t, \frac{1}{2}(1-\cos 2 t), \cos t\right\rangle\) and prove that it lies on the surface of a sphere centered at the origin.
Suppose the vector-valued function \(\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle\) is smooth on an interval containing the point \(t_{0} .\) The line tangent to \(\mathbf{r}(t)\) at \(t=t_{0}\) is the line parallel to the tangent vector \(\mathbf{r}^{\prime}\left(t_{0}\right)\) that passes through \(\left(f\left(t_{0}\right), g\left(t_{0}\right), h\left(t_{0}\right)\right) .\) For each of the following functions, find an equation of the line tangent to the curve at \(t=t_{0} .\) Choose an orientation for the line that is the same as the direction of \(\mathbf{r}^{\prime}\). $$\mathbf{r}(t)=\langle\sqrt{2 t+1}, \sin \pi t, 4\rangle ; t_{0}=4$$
Compute the following derivatives. $$\frac{d}{d t}\left(\left(3 t^{2} \mathbf{i}+\sqrt{t} \mathbf{j}-2 t^{-1} \mathbf{k}\right) \cdot(\cos t \mathbf{i}+\sin 2 t \mathbf{j}-3 t \mathbf{k})\right)$$
Compute the indefinite integral of the following functions. $$\mathbf{r}(t)=2^{t} \mathbf{i}+\frac{1}{1+2 t} \mathbf{j}+\ln t \mathbf{k}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.