Chapter 11: Problem 2
What is the relationship between the position and velocity vectors for motion on a circle?
Chapter 11: Problem 2
What is the relationship between the position and velocity vectors for motion on a circle?
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the function \(\mathbf{r}\) that satisfies the given conditions. $$\mathbf{r}^{\prime}(t)=\left\langle e^{t}, \sin t, \sec ^{2} t\right\rangle ; \mathbf{r}(0)=\langle 2,2,2\rangle$$
An object moves along a path given by \(\mathbf{r}(t)=\langle a \cos t+b \sin t, c \cos t+d \sin t\rangle, \quad\) for \(0 \leq t \leq 2 \pi\) a. What conditions on \(a, b, c,\) and \(d\) guarantee that the path is a circle? b. What conditions on \(a, b, c,\) and \(d\) guarantee that the path is an ellipse?
Use the formula in Exercise 79 to find the (least) distance between the given point \(Q\) and line \(\mathbf{r}\). $$Q(6,6,7), \mathbf{r}(t)=\langle 3 t,-3 t, 4\rangle$$
Jack pulls east on a rope attached to a camel with a force of 40 ib. Jill pulls north on a rope attached to the same camel with a force of 30 Ib. What is the magnitude and direction of the force on the camel? Assume the vectors lie in a horizontal plane.
Cauchy-Schwarz Inequality The definition \(\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta\) implies that \(|\mathbf{u} \cdot \mathbf{v}| \leq|\mathbf{u}||\mathbf{v}|\) (because \(|\cos \theta| \leq 1\) ). This inequality, known as the Cauchy-Schwarz Inequality, holds in any number of dimensions and has many consequences. Verify that the Cauchy-Schwarz Inequality holds for \(\mathbf{u}=\langle 3,-5,6\rangle\) and \(\mathbf{v}=\langle-8,3,1\rangle\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.