Chapter 11: Problem 1
Interpret the following statement: Points have a location, but no size or direction; nonzero vectors have a size and direction, but no location.
Chapter 11: Problem 1
Interpret the following statement: Points have a location, but no size or direction; nonzero vectors have a size and direction, but no location.
All the tools & learning materials you need for study success - in one app.
Get started for freeCompute \(\mathbf{r}^{\prime \prime}(t)\) and \(\mathbf{r}^{\prime \prime \prime}(t)\) for the following functions. $$\mathbf{r}(t)=\sqrt{t+4} \mathbf{i}+\frac{t}{t+1} \mathbf{j}-e^{-t^{2}} \mathbf{k}$$
Motion on a sphere Prove that \(\mathbf{r}\) describes a curve that lies on the surface of a sphere centered at the origin \(\left(x^{2}+y^{2}+z^{2}=a^{2}\right.\) with \(a \geq 0\) ) if and only if \(\mathbf{r}\) and \(\mathbf{r}^{\prime}\) are orthogonal at all points of the curve.
Compute the indefinite integral of the following functions. $$\mathbf{r}(t)=t e^{t} \mathbf{i}+t \sin t^{2} \mathbf{j}-\frac{2 t}{\sqrt{t^{2}+4}} \mathbf{k}$$
Let $$\mathbf{u}(t)=2 t^{3} \mathbf{i}+\left(t^{2}-1\right) \mathbf{j}-8 \mathbf{k} \text { and } \mathbf{v}(t)=e^{t} \mathbf{i}+2 e^{-t} \mathbf{j}-e^{2 t} \mathbf{k}$$ Compute the derivative of the following functions. $$\mathbf{v}(\sqrt{t})$$
Compute the following derivatives. $$\frac{d}{d t}\left(\left(t^{3} \mathbf{i}-2 t \mathbf{j}-2 \mathbf{k}\right) \times\left(t \mathbf{i}-t^{2} \mathbf{j}-t^{3} \mathbf{k}\right)\right)$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.