Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 82

In contrast to the proof in Exercise \(81,\) we now use coordinates and position vectors to prove the same result. Without loss of generality, let \(P\left(x_{1}, y_{1}, 0\right)\) and \(Q\left(x_{2}, y_{2}, 0\right)\) be two points in the \(x y\) -plane and let \(R\left(x_{3}, y_{3}, z_{3}\right)\) be a third point, such that \(P, Q,\) and \(R\) do not lie on a line. Consider \(\triangle P Q R\) a. Let \(M_{1}\) be the midpoint of the side \(P Q\). Find the coordinates of \(M_{1}\) and the components of the vector \(\overrightarrow{R M}\) b. Find the vector \(\overrightarrow{O Z}_{1}\) from the origin to the point \(Z_{1}\) two-thirds of the way along \(\overrightarrow{R M}_{1}\). c. Repeat the calculation of part (b) with the midpoint \(M_{2}\) of \(R Q\) and the vector \(\overrightarrow{P M}_{2}\) to obtain the vector \(\overrightarrow{O Z}_{2}\) d. Repeat the calculation of part (b) with the midpoint \(M_{3}\) of \(P R\) and the vector \(\overline{Q M}_{3}\) to obtain the vector \(\overrightarrow{O Z}_{3}\) e. Conclude that the medians of \(\triangle P Q R\) intersect at a point. Give the coordinates of the point. f. With \(P(2,4,0), Q(4,1,0),\) and \(R(6,3,4),\) find the point at which the medians of \(\triangle P Q R\) intersect.

Problem 82

Prove the following vector properties using components. Then make a sketch to illustrate the property geometrically. Suppose \(\mathbf{u}, \mathbf{v},\) and \(\mathbf{w}\) are vectors in the \(x y\) -plane and a and \(c\) are scalars. $$(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$$

Problem 83

Direction angles and cosines Let \(\mathbf{v}=\langle a, b, c\rangle\) and let \(\alpha, \beta\) and \(\gamma\) be the angles between \(\mathbf{v}\) and the positive \(x\) -axis, the positive \(y\) -axis, and the positive \(z\) -axis, respectively (see figure). a. Prove that \(\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1\) b. Find a vector that makes a \(45^{\circ}\) angle with \(\mathbf{i}\) and \(\mathbf{j}\). What angle does it make with \(\mathbf{k} ?\) c. Find a vector that makes a \(60^{\circ}\) angle with i and \(\mathbf{j}\). What angle does it make with k? d. Is there a vector that makes a \(30^{\circ}\) angle with \(\mathbf{i}\) and \(\mathbf{j} ?\) Explain. e. Find a vector \(\mathbf{v}\) such that \(\alpha=\beta=\gamma .\) What is the angle?

Problem 83

The points \(P, Q, R,\) and \(S,\) joined by the vectors \(\mathbf{u}, \mathbf{v}, \mathbf{w},\) and \(\mathbf{x},\) are the vertices of a quadrilateral in \(\mathbb{R}^{3}\). The four points needn't lie in \(a\) plane (see figure). Use the following steps to prove that the line segments joining the midpoints of the sides of the quadrilateral form a parallelogram. The proof does not use a coordinate system. a. Use vector addition to show that \(\mathbf{u}+\mathbf{v}=\mathbf{w}+\mathbf{x}\) b. Let \(\mathbf{m}\) be the vector that joins the midpoints of \(P Q\) and \(Q R\) Show that \(\mathbf{m}=(\mathbf{u}+\mathbf{v}) / 2\) c. Let \(n\) be the vector that joins the midpoints of \(P S\) and \(S R\). Show that \(\mathbf{n}=(\mathbf{x}+\mathbf{w}) / 2\) d. Combine parts (a), (b), and (c) to conclude that \(\mathbf{m}=\mathbf{n}\) e. Explain why part (d) implies that the line segments joining the midpoints of the sides of the quadrilateral form a parallelogram.

Problem 83

An object moves along a path given by $$\mathbf{r}(t)=\langle a \cos t+b \sin t, c \cos t+d \sin t, e \cos t+f \sin t\rangle$$ for \(0 \leq t \leq 2 \pi\) a. Show that the curve described by \(\mathbf{r}\) lies in a plane. b. What conditions on \(a, b, c, d, e,\) and \(f\) guarantee that the curve described by \(\mathbf{r}\) is a circle?

Problem 83

Prove the following vector properties using components. Then make a sketch to illustrate the property geometrically. Suppose \(\mathbf{u}, \mathbf{v},\) and \(\mathbf{w}\) are vectors in the \(x y\) -plane and a and \(c\) are scalars. $$a(c \mathbf{v})=(a c) \mathbf{v}$$

Problem 84

Prove the following vector properties using components. Then make a sketch to illustrate the property geometrically. Suppose \(\mathbf{u}, \mathbf{v},\) and \(\mathbf{w}\) are vectors in the \(x y\) -plane and a and \(c\) are scalars. $$a(\mathbf{u}+\mathbf{v})=a \mathbf{u}+a \mathbf{v}$$

Problem 84

Show that the formula defining the torsion, \(\tau=-\frac{d \mathbf{B}}{d s} \cdot \mathbf{N},\) is equivalent to \(\tau=-\frac{1}{|\mathbf{v}|} \frac{d \mathbf{B}}{d t} \cdot \mathbf{N} .\) The second formula is generally easier to use.

Problem 84

Cauchy-Schwarz Inequality The definition \(\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta\) implies that \(|\mathbf{u} \cdot \mathbf{v}| \leq|\mathbf{u}||\mathbf{v}|\) (because \(|\cos \theta| \leq 1\) ). This inequality, known as the Cauchy-Schwarz Inequality, holds in any number of dimensions and has many consequences. What conditions on \(\mathbf{u}\) and \(\mathbf{v}\) lead to equality in the CauchySchwarz Inequality?

Problem 84

Derivative rules Suppose \(\mathbf{u}\) and \(\mathbf{v}\) are differentiable functions at \(t=0\) with \(\mathbf{u}(0)=\langle 0,1,1\rangle, \mathbf{u}^{\prime}(0)=\langle 0,7,1\rangle\) \(\mathbf{v}(0)=\langle 0,1,1\rangle,\) and \(\mathbf{v}^{\prime}(0)=\langle 1,1,2\rangle .\) Evaluate the following expressions. a. \(\left.\frac{d}{d t}(\mathbf{u} \cdot \mathbf{v})\right|_{t=0}\) b. \(\left.\frac{d}{d t}(\mathbf{u} \times \mathbf{v})\right|_{t=0}\) c. \(\left.\frac{d}{d t}(\cos t \mathbf{u}(t))\right|_{t=0}\)

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks