Chapter 10: Problem 99
Consider the parametric equations $$ x=a \cos t+b \sin t, \quad y=c \cos t+d \sin t $$ where \(a, b, c,\) and \(d\) are real numbers. a. Show that (apart from a set of special cases) the equations describe an ellipse of the form \(A x^{2}+B x y+C y^{2}=K,\) where \(A, B, C,\) and \(K\) are constants. b. Show that (apart from a set of special cases), the equations describe an ellipse with its axes aligned with the \(x\) - and \(y\) -axes provided \(a b+c d=0\) c. Show that the equations describe a circle provided \(a b+c d=0\) and \(c^{2}+d^{2}=a^{2}+b^{2} \neq 0\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.