Chapter 10: Problem 97
Sector of a hyperbola Let \(H\) be the right branch of the hyperbola \(x^{2}-y^{2}=1\) and let \(\ell\) be the line \(y=m(x-2)\) that passes through the point (2,0) with slope \(m,\) where \(-\infty < m < \infty\). Let \(R\) be the region in the first quadrant bounded by \(H\) and \(\ell\) (see figure). Let \(A(m)\) be the area of \(R .\) Note that for some values of \(m\) \(A(m)\) is not defined. a. Find the \(x\) -coordinates of the intersection points between \(H\) and \(\ell\) as functions of \(m ;\) call them \(u(m)\) and \(v(m),\) where \(v(m) > u(m) > 1 .\) For what values of \(m\) are there two intersection points? b. Evaluate \(\lim _{m \rightarrow 1^{+}} u(m)\) and \(\lim _{m \rightarrow 1^{+}} v(m)\) c. Evaluate \(\lim _{m \rightarrow \infty} u(m)\) and \(\lim _{m \rightarrow \infty} v(m)\) d. Evaluate and interpret \(\lim _{m \rightarrow \infty} A(m)\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.