Chapter 10: Problem 82
Which of the following parametric equations describe the same curve? a. \(x=2 t^{2}, y=4+t ;-4 \leq t \leq 4\) b. \(x=2 t^{4}, y=4+t^{2} ;-2 \leq t \leq 2\) c. \(x=2 t^{2 / 3}, y=4+t^{1 / 3} ;-64 \leq t \leq 64\)
Chapter 10: Problem 82
Which of the following parametric equations describe the same curve? a. \(x=2 t^{2}, y=4+t ;-4 \leq t \leq 4\) b. \(x=2 t^{4}, y=4+t^{2} ;-2 \leq t \leq 2\) c. \(x=2 t^{2 / 3}, y=4+t^{1 / 3} ;-64 \leq t \leq 64\)
All the tools & learning materials you need for study success - in one app.
Get started for freeCompleted in 1937, San Francisco's Golden Gate Bridge is \(2.7 \mathrm{km}\) long and weighs about 890,000 tons. The length of the span between the two central towers is \(1280 \mathrm{m}\) the towers themselves extend \(152 \mathrm{m}\) above the roadway. The cables that support the deck of the bridge between the two towers hang in a parabola (see figure). Assuming the origin is midway between the towers on the deck of the bridge, find an equation that describes the cables. How long is a guy wire that hangs vertically from the cables to the roadway \(500 \mathrm{m}\) from the center of the bridge?
Suppose that two hyperbolas with eccentricities \(e\) and \(E\) have perpendicular major axes and share a set of asymptotes. Show that \(e^{-2}+E^{-2}=1\)
A family of curves called hyperbolas (discussed in Section 10.4 ) has the
parametric equations \(x=a\) tan \(t\) \(y=b \sec t,\) for \(-\pi
Prove that the equations $$x=a \cos t+b \sin t, \quad y=c \cos t+d \sin t,$$ where \(a, b, c,\) and \(d\) are real numbers, describe a circle of radius \(R\) provided \(a^{2}+c^{2}=b^{2}+d^{2}=R^{2}\) and \(a b+c d=0.\)
Consider an ellipse to be the set of points in a plane whose distances from two fixed points have a constant sum 2 \(a .\) Derive the equation of an ellipse. Assume the two fixed points are on the \(x\) -axis equidistant from the origin.
What do you think about this solution?
We value your feedback to improve our textbook solutions.