Chapter 10: Problem 72
Find a polar equation for each conic section. Assume one focus is at the origin.
Chapter 10: Problem 72
Find a polar equation for each conic section. Assume one focus is at the origin.
All the tools & learning materials you need for study success - in one app.
Get started for freeFind an equation of the line tangent to the hyperbola \(x^{2} / a^{2}-y^{2} / b^{2}=1\) at the point \(\left(x_{0}, y_{0}\right)\)
Graph the following equations. Then use arrows and labeled points to indicate how the curve is generated as \(\theta\) increases from 0 to \(2 \pi\). $$r=\frac{1}{1+\sin \theta}$$
Show that the equation \(r=a \cos \theta+b \sin \theta\) where \(a\) and \(b\) are real numbers, describes a circle. Find the center and radius of the circle.
Consider a hyperbola to be the set of points in a plane whose distances from two fixed points have a constant difference of \(2 a\) or \(-2 a\). Derive the equation of a hyperbola. Assume the two fixed points are on the \(x\) -axis equidistant from the origin.
Use a graphing utility to graph the parabolas \(y^{2}=4 p x,\) for \(p=-5,-2,-1,1,2,\) and 5 on the same set of axes. Explain how the shapes of the curves vary as \(p\) changes.
What do you think about this solution?
We value your feedback to improve our textbook solutions.