Chapter 10: Problem 71
Find an equation of the line tangent to the following curves at the given point. $$y^{2}-\frac{x^{2}}{64}=1 ;\left(6,-\frac{5}{4}\right)$$
Chapter 10: Problem 71
Find an equation of the line tangent to the following curves at the given point. $$y^{2}-\frac{x^{2}}{64}=1 ;\left(6,-\frac{5}{4}\right)$$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind parametric equations (not unique) of the following ellipses (see Exercises \(75-76\) ). Graph the ellipse and find a description in terms of \(x\) and \(y.\) An ellipse centered at (-2,-3) with major and minor axes of lengths 30 and \(20,\) parallel to the \(x\) - and \(y\) -axes, respectively, generated counterclockwise (Hint: Shift the parametric equations.)
Consider the region \(R\) bounded by the right branch of the hyperbola \(x^{2} / a^{2}-y^{2} / b^{2}=1\) and the vertical line through the right focus. a. What is the volume of the solid that is generated when \(R\) is revolved about the \(x\) -axis? b. What is the volume of the solid that is generated when \(R\) is revolved about the \(y\) -axis?
Equations of the form \(r^{2}=a \sin 2 \theta\) and \(r^{2}=a \cos 2 \theta\) describe lemniscates (see Example 7 ). Graph the following lemniscates. \(r^{2}=-2 \sin 2 \theta\)
Show that the polar equation of an ellipse or a hyperbola with one focus at the origin, major axis of length \(2 a\) on the \(x\) -axis, and eccentricity \(e\) is $$r=\frac{a\left(1-e^{2}\right)}{1+e \cos \theta}$$
Show that the graph of \(r=a \sin m \theta\) or \(r=a \cos m \theta\) is a rose with \(m\) leaves if \(m\) is an odd integer and a rose with \(2 m\) leaves if \(m\) is an even integer.
What do you think about this solution?
We value your feedback to improve our textbook solutions.