Chapter 10: Problem 7
Explain three symmetries in polar graphs and how they are detected in equations.
Chapter 10: Problem 7
Explain three symmetries in polar graphs and how they are detected in equations.
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider the following pairs of lines. Determine whether the lines are parallel or intersecting. If the lines intersect, then determine the point of intersection. a. \(x=1+s, y=2 s\) and \(x=1+2 t, y=3 t\) b. \(x=2+5 s, y=1+s\) and \(x=4+10 t, y=3+2 t\) c. \(x=1+3 s, y=4+2 s\) and \(x=4-3 t, y=6+4 t\)
An epitrochoid is the path of a point on a circle of radius \(b\) as it rolls on the outside of a circle of radius \(a\). It is described by the equations $$\begin{array}{l}x=(a+b) \cos t-c \cos \left(\frac{(a+b) t}{b}\right) \\\y=(a+b) \sin t-c \sin \left(\frac{(a+b) t}{b}\right)\end{array}$$ Use a graphing utility to explore the dependence of the curve on the parameters \(a, b,\) and \(c.\)
A focal chord of a conic section is a line through a focus joining two points of the curve. The latus rectum is the focal chord perpendicular to the major axis of the conic. Prove the following properties. The length of the latus rectum of the parabola \(y^{2}=4 p x\) or \(x^{2}=4 p y\) is \(4|p|\)
An ellipse (discussed in detail in Section 10.4 ) is generated by the parametric equations \(x=a \cos t, y=b \sin t.\) If \(0 < a < b,\) then the long axis (or major axis) lies on the \(y\) -axis and the short axis (or minor axis) lies on the \(x\) -axis. If \(0 < b < a,\) the axes are reversed. The lengths of the axes in the \(x\) - and \(y\) -directions are \(2 a\) and \(2 b,\) respectively. Sketch the graph of the following ellipses. Specify an interval in t over which the entire curve is generated. $$x=4 \cos t, y=9 \sin t$$
Show that the equation \(r=a \cos \theta+b \sin \theta\) where \(a\) and \(b\) are real numbers, describes a circle. Find the center and radius of the circle.
What do you think about this solution?
We value your feedback to improve our textbook solutions.