Chapter 10: Problem 62
Graph the following equations. Then use arrows and labeled points to indicate how the curve is generated as \(\theta\) increases from 0 to \(2 \pi\). $$r=\frac{1}{1+2 \cos \theta}$$
Chapter 10: Problem 62
Graph the following equations. Then use arrows and labeled points to indicate how the curve is generated as \(\theta\) increases from 0 to \(2 \pi\). $$r=\frac{1}{1+2 \cos \theta}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider the curve \(r=f(\theta)=\cos a^{\theta}-1.5\) where \(a=(1+12 \pi)^{1 /(2 \pi)} \approx 1.78933\) (see figure). a. Show that \(f(0)=f(2 \pi)\) and find the point on the curve that corresponds to \(\theta=0\) and \(\theta=2 \pi\) b. Is the same curve produced over the intervals \([-\pi, \pi]\) and \([0,2 \pi] ?\) c. Let \(f(\theta)=\cos a^{\theta}-b,\) where \(a=(1+2 k \pi)^{1 /(2 \pi)}, k\) is an integer, and \(b\) is a real number. Show that \(f(0)=f(2 \pi)\) and that the curve closes on itself. d. Plot the curve with various values of \(k\). How many fingers can you produce?
A simplified model assumes that the orbits of Earth and Mars are circular with radii of 2 and \(3,\) respectively, and that Earth completes one orbit in one year while Mars takes two years. When \(t=0,\) Earth is at (2,0) and Mars is at (3,0) both orbit the Sun (at (0,0) ) in the counterclockwise direction. The position of Mars relative to Earth is given by the parametric equations \(x=(3-4 \cos \pi t) \cos \pi t+2, \quad y=(3-4 \cos \pi t) \sin \pi t\) a. Graph the parametric equations, for \(0 \leq t \leq 2\) b. Letting \(r=(3-4 \cos \pi t),\) explain why the path of Mars relative to Earth is a limaçon (Exercise 89).
Consider the parametric equations $$ x=a \cos t+b \sin t, \quad y=c \cos t+d \sin t $$ where \(a, b, c,\) and \(d\) are real numbers. a. Show that (apart from a set of special cases) the equations describe an ellipse of the form \(A x^{2}+B x y+C y^{2}=K,\) where \(A, B, C,\) and \(K\) are constants. b. Show that (apart from a set of special cases), the equations describe an ellipse with its axes aligned with the \(x\) - and \(y\) -axes provided \(a b+c d=0\) c. Show that the equations describe a circle provided \(a b+c d=0\) and \(c^{2}+d^{2}=a^{2}+b^{2} \neq 0\)
The region bounded by the parabola \(y=a x^{2}\) and the horizontal line \(y=h\) is revolved about the \(y\) -axis to generate a solid bounded by a surface called a paraboloid (where \(a>0\) and \(h>0\) ). Show that the volume of the solid is \(\frac{3}{2}\) the volume of the cone with the same base and vertex.
Graph the following equations. Then use arrows and labeled points to indicate how the curve is generated as \(\theta\) increases from 0 to \(2 \pi\). $$r=\frac{1}{1-2 \cos \theta}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.