Chapter 10: Problem 3
Write the equations that are used to express a point with Cartesian coordinates \((x, y)\) in polar coordinates.
Chapter 10: Problem 3
Write the equations that are used to express a point with Cartesian coordinates \((x, y)\) in polar coordinates.
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider the region \(R\) bounded by the right branch of the hyperbola \(x^{2} / a^{2}-y^{2} / b^{2}=1\) and the vertical line through the right focus. a. What is the volume of the solid that is generated when \(R\) is revolved about the \(x\) -axis? b. What is the volume of the solid that is generated when \(R\) is revolved about the \(y\) -axis?
Completed in 1937, San Francisco's Golden Gate Bridge is \(2.7 \mathrm{km}\) long and weighs about 890,000 tons. The length of the span between the two central towers is \(1280 \mathrm{m}\) the towers themselves extend \(152 \mathrm{m}\) above the roadway. The cables that support the deck of the bridge between the two towers hang in a parabola (see figure). Assuming the origin is midway between the towers on the deck of the bridge, find an equation that describes the cables. How long is a guy wire that hangs vertically from the cables to the roadway \(500 \mathrm{m}\) from the center of the bridge?
Find an equation of the following curves, assuming the center is at the origin. Sketch a graph labeling the vertices, foci, asymptotes (if they exist), and directrices. Use a graphing utility to check your work. An ellipse with vertices (±9,0) and eccentricity \(\frac{1}{3}\)
Equations of the form \(r=a \sin m \theta\) or \(r=a \cos m \theta,\) where \(a\) is a real number and \(m\) is a positive integer, have graphs known as roses (see Example 6 ). Graph the following roses. \(r=\sin 2 \theta\)
Consider the following Lissajous curves. Graph the curve and estimate the coordinates of the points on the curve at which there is (a) a horizontal tangent line and (b) a vertical tangent line. (See the Guided Project Parametric art for more on Lissajous curves.) $$\begin{aligned}&x=\sin 4 t, y=\sin 3 t\\\&0 \leq t \leq 2 \pi\end{aligned}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.