Chapter 10: Problem 3
Give the property that defines all hyperbolas.
Chapter 10: Problem 3
Give the property that defines all hyperbolas.
All the tools & learning materials you need for study success - in one app.
Get started for freeShow that an ellipse and a hyperbola that have the same two foci intersect at right angles.
A focal chord of a conic section is a line through a focus joining two points of the curve. The latus rectum is the focal chord perpendicular to the major axis of the conic. Prove the following properties. The lines tangent to the endpoints of any focal chord of a parabola \(y^{2}=4 p x\) intersect on the directrix and are perpendicular.
Find an equation of the following hyperbolas, assuming the center is at the origin. Sketch a graph labeling the vertices, foci, and asymptotes. Use a graphing utility to check your work. A hyperbola with vertices (±1,0) that passes through \(\left(\frac{5}{3}, 8\right)\)
Consider the polar curve \(r=\cos (n \theta / m)\) where \(n\) and \(m\) are integers. a. Graph the complete curve when \(n=2\) and \(m=3\) b. Graph the complete curve when \(n=3\) and \(m=7\) c. Find a general rule in terms of \(m\) and \(n\) (where \(m\) and \(n\) have no common factors) for determining the least positive number \(P\) such that the complete curve is generated over the interval \([0, P]\).
Find a polar equation for each conic section. Assume one focus is at the origin.
What do you think about this solution?
We value your feedback to improve our textbook solutions.