Chapter 10: Problem 2
Give the property that defines all ellipses.
Chapter 10: Problem 2
Give the property that defines all ellipses.
All the tools & learning materials you need for study success - in one app.
Get started for freeA family of curves called hyperbolas (discussed in Section 10.4 ) has the
parametric equations \(x=a\) tan \(t\) \(y=b \sec t,\) for \(-\pi
A simplified model assumes that the orbits of Earth and Mars are circular with radii of 2 and \(3,\) respectively, and that Earth completes one orbit in one year while Mars takes two years. When \(t=0,\) Earth is at (2,0) and Mars is at (3,0) both orbit the Sun (at (0,0) ) in the counterclockwise direction. The position of Mars relative to Earth is given by the parametric equations \(x=(3-4 \cos \pi t) \cos \pi t+2, \quad y=(3-4 \cos \pi t) \sin \pi t\) a. Graph the parametric equations, for \(0 \leq t \leq 2\) b. Letting \(r=(3-4 \cos \pi t),\) explain why the path of Mars relative to Earth is a limaçon (Exercise 89).
Find an equation of the line tangent to the hyperbola \(x^{2} / a^{2}-y^{2} / b^{2}=1\) at the point \(\left(x_{0}, y_{0}\right)\)
Water flows in a shallow semicircular channel with inner and outer radii of \(1 \mathrm{m}\) and \(2 \mathrm{m}\) (see figure). At a point \(P(r, \theta)\) in the channel, the flow is in the tangential direction (counterclockwise along circles), and it depends only on \(r,\) the distance from the center of the semicircles. a. Express the region formed by the channel as a set in polar coordinates. b. Express the inflow and outflow regions of the channel as sets in polar coordinates. c. Suppose the tangential velocity of the water in \(\mathrm{m} / \mathrm{s}\) is given by \(v(r)=10 r,\) for \(1 \leq r \leq 2 .\) Is the velocity greater at \(\left(1.5, \frac{\pi}{4}\right)\) or \(\left(1.2, \frac{3 \pi}{4}\right) ?\) Explain. d. Suppose the tangential velocity of the water is given by \(v(r)=\frac{20}{r},\) for \(1 \leq r \leq 2 .\) Is the velocity greater at \(\left(1.8, \frac{\pi}{6}\right)\) or \(\left(1.3, \frac{2 \pi}{3}\right) ?\) Explain. e. The total amount of water that flows through the channel (across a cross section of the channel \(\theta=\theta_{0}\) ) is proportional to \(\int_{1}^{2} v(r) d r .\) Is the total flow through the channel greater for the flow in part (c) or (d)?
Graph the following conic sections, labeling the vertices, foci, directrices, and asymptotes (if they exist). Use a graphing utility to check your work. $$r=\frac{1}{2-2 \sin \theta}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.