Chapter 1: Problem 80
A capacitor is a device that stores electrical charge. The charge on a capacitor accumulates according to the function \(Q(t)=a\left(1-e^{-t / c}\right),\) where \(t\) is measured in seconds, and \(a\) and \(c>0\) are physical constants. The steady-state charge is the value that \(Q(t)\) approaches as \(t\) becomes large. a. Graph the charge function for \(t \geq 0\) using \(a=1\) and \(c=10\) Find a graphing window that shows the full range of the function. b. Vary the value of \(a\) while holding \(c\) fixed. Describe the effect on the curve. How does the steady-state charge vary with \(a ?\) c. Vary the value of \(c\) while holding \(a\) fixed. Describe the effect on the curve. How does the steady-state charge vary with \(c ?\) d. Find a formula that gives the steady-state charge in terms of \(a\) and \(c\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.