Chapter 1: Problem 73
Without using a graphing utility, sketch the graph of \(y=\log _{2} x .\) Then on the same set of axes, sketch the graphs of \(y=\log _{2}(x-1), y=\log _{2} x^{2}\) \(y=\left(\log _{2} x\right)^{2},\) and \(y=\log _{2} x+1\)
Chapter 1: Problem 73
Without using a graphing utility, sketch the graph of \(y=\log _{2} x .\) Then on the same set of axes, sketch the graphs of \(y=\log _{2}(x-1), y=\log _{2} x^{2}\) \(y=\left(\log _{2} x\right)^{2},\) and \(y=\log _{2} x+1\)
All the tools & learning materials you need for study success - in one app.
Get started for freeOne function gives all six Given the following information about one trigonometric function, evaluate the other five functions. $$\sec \theta=\frac{5}{3} \text { and } 3 \pi / 2<\theta<2 \pi$$
Right-triangle relationships Draw a right triangle to simplify the given expressions. Assume \(x>0.\) $$\cos \left(\sin ^{-1}(x / 3)\right)$$
Make a sketch of the given pairs of functions. Be sure to draw the graphs accurately relative to each other. $$y=x^{3} \text { and } y=x^{7}$$
The height in feet of a baseball hit straight up from the ground with an initial velocity of \(64 \mathrm{ft} / \mathrm{s}\) is given by \(h=f(t)=64 t-16 t^{2},\) where \(t\) is measured in seconds after the hit. a. Is this function one-to-one on the interval \(0 \leq t \leq 4 ?\) b. Find the inverse function that gives the time \(t\) at which the ball is at height \(h\) as the ball travels upward. Express your answer in the form \(t=f^{-1}(h)\) c. Find the inverse function that gives the time \(t\) at which the ball is at height \(h\) as the ball travels downward. Express your answer in the form \(t=f^{-1}(h)\) d. At what time is the ball at a height of \(30 \mathrm{ft}\) on the way up? e. At what time is the ball at a height of \(10 \mathrm{ft}\) on the way down?
Using inverse relations One hundred grams of a particular radioactive substance decays according to the function \(m(t)=100 e^{-t / 650},\) where \(t>0\) measures time in years. When does the mass reach 50 grams?
What do you think about this solution?
We value your feedback to improve our textbook solutions.