Conducting
function symmetry tests allows us to determine if a function has symmetry about the x-axis, y-axis, or origin. These tests serve as a checkpoints:
- For x-axis symmetry: We verify if \( f(x) = - f(x) \).
- For y-axis symmetry: The condition to check is \( f(x) = f(-x) \).
- For origin symmetry: We check whether \( f(x) = -f(-x) \).
By analyzing the function algebraically, these conditions systematically expose the symmetry, if any, inherent in the function's graph. Despite the conclusion of these tests, it is often useful to graph the function for visual confirmation. The graph provides both a visual affirmation of the analytical test and an understanding of the overall shape and behavior of the function.