Chapter 1: Problem 2
What is the domain of a polynomial?
Chapter 1: Problem 2
What is the domain of a polynomial?
All the tools & learning materials you need for study success - in one app.
Get started for freeWrite the following logarithms in terms of the natural logarithm. Then use a calculator to find the value of the logarithm, rounding your result to four decimal places. $$\log _{6} 60$$
Find a simple function that fits the data in the tables. $$\begin{array}{|r|r|} \hline x & y \\ \hline 0 & -1 \\ \hline 1 & 0 \\ \hline 4 & 1 \\ \hline 9 & 2 \\ \hline 16 & 3 \\ \hline \end{array}$$
Finding the inverse of a cubic polynomial is equivalent to solving a cubic equation. A special case that is simpler than the general case is the cubic \(y=f(x)=x^{3}+\) ax. Find the inverse of the following cubics using the substitution (known as Vieta's substitution) \(x=z-a /(3 z) .\) Be sure to determine where the function is one-to-one. $$f(x)=x^{3}+2 x$$
Optimal boxes Imagine a lidless box with height \(h\) and a square base whose sides have length \(x\). The box must have a volume of \(125 \mathrm{ft}^{3}\). a. Find and graph the function \(S(x)\) that gives the surface area of the box, for all values of \(x>0\) b. Based on your graph in part (a), estimate the value of \(x\) that produces the box with a minimum surface area.
Sawtooth wave Graph the sawtooth wave defined by $$f(x)=\left\\{\begin{array}{ll} \vdots & \\\x+1 & \text { if }-1 \leq x<0 \\\x & \text { if } 0 \leq x<1 \\\x-1 & \text { if } 1 \leq x<2 \\\x-2 & \text { if } 2 \leq x<3 \\\\\vdots & \vdots\end{array}\right.$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.