Chapter 9: Problem 99
The expression where the process continues indefinitely, is called a continued fraction. a. Show that this expression can be built in steps using the recurrence relation \(a_{0}=1, a_{n+1}=1+1 / a_{n},\) for \(n=0,1,2,3, \ldots . .\) Explain why the value of the expression can be interpreted as \(\lim a_{n}\). b. Evaluate the first five terms of the sequence \(\left\\{a_{n}\right\\}\). c. Using computation and/or graphing, estimate the limit of the sequence. d. Assuming the limit exists, use the method of Example 5 to determine the limit exactly. Compare your estimate with \((1+\sqrt{5}) / 2,\) a number known as the golden mean. e. Assuming the limit exists, use the same ideas to determine the value of where \(a\) and \(b\) are positive real numbers.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.