Chapter 9: Problem 95
The CORDIC (COordinate Rotation DIgital Calculation) algorithm is used by most calculators to evaluate trigonometric and logarithmic functions. An important number in the CORDIC algorithm, called the aggregate constant, is \(\prod_{n=0}^{\infty} \frac{2^{n}}{\sqrt{1+2^{2 n}}},\) where \(\prod_{n=0}^{N} a_{n}\) represents the product \(a_{0} \cdot a_{1} \cdots a_{N}\). This infinite product is the limit of the sequence $$\left\\{\prod_{n=0}^{0} \frac{2^{n}}{\sqrt{1+2^{2 n}}} \cdot \prod_{n=0}^{1} \frac{2^{n}}{\sqrt{1+2^{2 n}}}, \prod_{n=0}^{2} \frac{2^{n}}{\sqrt{1+2^{2 n}}} \ldots .\right\\}.$$ Estimate the value of the aggregate constant.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.