Chapter 9: Problem 94
Suppose a function \(f\) is defined by the geometric series \(f(x)=\sum_{k=0}^{\infty} x^{k}\) a. Evaluate \(f(0), f(0.2), f(0.5), f(1),\) and \(f(1.5),\) if possible. b. What is the domain of \(f ?\)
Chapter 9: Problem 94
Suppose a function \(f\) is defined by the geometric series \(f(x)=\sum_{k=0}^{\infty} x^{k}\) a. Evaluate \(f(0), f(0.2), f(0.5), f(1),\) and \(f(1.5),\) if possible. b. What is the domain of \(f ?\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe famous Fibonacci sequence was proposed by Leonardo Pisano, also known as Fibonacci, in about A.D. 1200 as a model for the growth of rabbit populations. It is given by the recurrence relation \(f_{n+1}=f_{n}+f_{n-1}\), for \(n=1,2,3, \ldots,\) where \(f_{0}=0, f_{1}=1 .\) Each term of the sequence is the sum of its two predecessors. a. Write out the first ten terms of the sequence. b. Is the sequence bounded? c. Estimate or determine \(\varphi=\lim _{n \rightarrow \infty} \frac{f_{n+1}}{f_{n}},\) the ratio of the successive terms of the sequence. Provide evidence that \(\varphi=(1+\sqrt{5}) / 2,\) a number known as the golden mean. d. Verify the remarkable result that $$f_{n}=\frac{1}{\sqrt{5}}\left(\varphi^{n}-(-1)^{n} \varphi^{-n}\right)$$
In Section 3, we established that the geometric series \(\Sigma r^{k}\)
converges provided \(|r|<1\). Notice that if \(-1
Consider the following infinite series. a. Write out the first four terms of the sequence of partial sums. b. Estimate the limit of \(\left\\{S_{n}\right\\}\) or state that it does not exist. $$\sum_{k=1}^{\infty}(-1)^{k}$$
Convergence parameter Find the values of the parameter \(p>0\) for which the following series converge. $$\sum_{k=2}^{\infty} \frac{1}{k \ln k(\ln \ln k)^{p}}$$
Consider the following sequences defined by a recurrence relation. Use a calculator, analytical methods, and/or graphing to make a conjecture about the value of the limit or determine that the limit does not exist. $$a_{n+1}=4 a_{n}\left(1-a_{n}\right) ; a_{0}=0.5, n=0,1,2, \dots$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.