Chapter 9: Problem 91
The sequence \(\\{n !\\}\) ultimately grows faster than the sequence \(\left\\{b^{n}\right\\},\) for any \(b > 1,\) as \(n \rightarrow \infty .\) However, \(b^{n}\) is generally greater than \(n !\) for small values of \(n\). Use a calculator to determine the smallest value of \(n\) such that \(n ! > b^{n}\) for each of the cases \(b=2, b=e,\) and \(b=10\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.