Chapter 9: Problem 82
A well-known method for approximating \(\sqrt{c}\) for positive real numbers \(c\) consists of the following recurrence relation (based on Newton's method). Let \(a_{0}=c\) and $$a_{n+1}=\frac{1}{2}\left(a_{n}+\frac{c}{a_{n}}\right), \quad \text { for } n=0,1,2,3, \dots$$ a. Use this recurrence relation to approximate \(\sqrt{10} .\) How many terms of the sequence are needed to approximate \(\sqrt{10}\) with an error less than \(0.01 ?\) How many terms of the sequence are needed to approximate \(\sqrt{10}\) with an error less than \(0.0001 ?\) (To compute the error, assume a calculator gives the exact value.) b. Use this recurrence relation to approximate \(\sqrt{c},\) for \(c=2\) \(3, \ldots, 10 .\) Make a table showing how many terms of the sequence are needed to approximate \(\sqrt{c}\) with an error less than \(0.01.\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.