Chapter 9: Problem 75
Consider the following infinite series. a. Write out the first four terms of the sequence of partial sums. b. Estimate the limit of \(\left\\{S_{n}\right\\}\) or state that it does not exist. $$\sum_{k=1}^{\infty}(-1)^{k}$$
Chapter 9: Problem 75
Consider the following infinite series. a. Write out the first four terms of the sequence of partial sums. b. Estimate the limit of \(\left\\{S_{n}\right\\}\) or state that it does not exist. $$\sum_{k=1}^{\infty}(-1)^{k}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine whether the following series converge absolutely or conditionally, or diverge. $$\sum_{k=2}^{\infty} \frac{(-1)^{k}}{\ln k}$$
Convergence parameter Find the values of the parameter \(p>0\) for which the following series converge. $$\sum_{k=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots(2 k-1)}{p^{k} k !}$$
The CORDIC (COordinate Rotation DIgital Calculation) algorithm is used by most calculators to evaluate trigonometric and logarithmic functions. An important number in the CORDIC algorithm, called the aggregate constant, is \(\prod_{n=0}^{\infty} \frac{2^{n}}{\sqrt{1+2^{2 n}}},\) where \(\prod_{n=0}^{N} a_{n}\) represents the product \(a_{0} \cdot a_{1} \cdots a_{N}\). This infinite product is the limit of the sequence $$\left\\{\prod_{n=0}^{0} \frac{2^{n}}{\sqrt{1+2^{2 n}}} \cdot \prod_{n=0}^{1} \frac{2^{n}}{\sqrt{1+2^{2 n}}}, \prod_{n=0}^{2} \frac{2^{n}}{\sqrt{1+2^{2 n}}} \ldots .\right\\}.$$ Estimate the value of the aggregate constant.
a. Consider the number 0.555555...., which can be viewed as the series \(5 \sum_{k=1}^{\infty} 10^{-k} .\) Evaluate the geometric series to obtain a rational value of \(0.555555 \ldots\) b. Consider the number \(0.54545454 \ldots,\) which can be represented by the series \(54 \sum_{k=1}^{\infty} 10^{-2 k} .\) Evaluate the geometric series to obtain a rational value of the number. c. Now generalize parts (a) and (b). Suppose you are given a number with a decimal expansion that repeats in cycles of length \(p,\) say, \(n_{1}, n_{2} \ldots \ldots, n_{p},\) where \(n_{1}, \ldots, n_{p}\) are integers between 0 and \(9 .\) Explain how to use geometric series to obtain a rational form of the number. d. Try the method of part (c) on the number \(0.123456789123456789 \ldots\) e. Prove that \(0 . \overline{9}=1\)
Consider the following infinite series. a. Write out the first four terms of the sequence of partial sums. b. Estimate the limit of \(\left\\{S_{n}\right\\}\) or state that it does not exist. $$\sum_{k=1}^{\infty}(-1)^{k} k$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.