Chapter 9: Problem 72
Use the formal definition of the limit of a sequence to prove the following limits. $$\lim _{n \rightarrow \infty} b^{-n}=0, \text { for } b > 1$$
Chapter 9: Problem 72
Use the formal definition of the limit of a sequence to prove the following limits. $$\lim _{n \rightarrow \infty} b^{-n}=0, \text { for } b > 1$$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the limit of the sequence $$\left\\{a_{n}\right\\}_{n=2}^{\infty}=\left\\{\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right) \cdots\left(1-\frac{1}{n}\right)\right\\}.$$
a. Consider the number 0.555555...., which can be viewed as the series \(5 \sum_{k=1}^{\infty} 10^{-k} .\) Evaluate the geometric series to obtain a rational value of \(0.555555 \ldots\) b. Consider the number \(0.54545454 \ldots,\) which can be represented by the series \(54 \sum_{k=1}^{\infty} 10^{-2 k} .\) Evaluate the geometric series to obtain a rational value of the number. c. Now generalize parts (a) and (b). Suppose you are given a number with a decimal expansion that repeats in cycles of length \(p,\) say, \(n_{1}, n_{2} \ldots \ldots, n_{p},\) where \(n_{1}, \ldots, n_{p}\) are integers between 0 and \(9 .\) Explain how to use geometric series to obtain a rational form of the number. d. Try the method of part (c) on the number \(0.123456789123456789 \ldots\) e. Prove that \(0 . \overline{9}=1\)
Consider the following infinite series. a. Write out the first four terms of the sequence of partial sums. b. Estimate the limit of \(\left\\{S_{n}\right\\}\) or state that it does not exist. $$\sum_{k=1}^{\infty} \frac{3}{10^{k}}$$
Two sine series Determine whether the following series converge. a. \(\sum_{k=1}^{\infty} \sin \frac{1}{k}\) b. \(\sum_{k=1}^{\infty} \frac{1}{k} \sin \frac{1}{k}\)
Evaluate the limit of the following sequences. $$a_{n}=\frac{n^{8}+n^{7}}{n^{7}+n^{8} \ln n}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.