Chapter 9: Problem 69
Use the formal definition of the limit of a sequence to prove the following limits. $$\lim _{n \rightarrow \infty} \frac{1}{n}=0$$
Chapter 9: Problem 69
Use the formal definition of the limit of a sequence to prove the following limits. $$\lim _{n \rightarrow \infty} \frac{1}{n}=0$$
All the tools & learning materials you need for study success - in one app.
Get started for freeConvergence parameter Find the values of the parameter \(p>0\) for which the following series converge. $$\sum_{k=2}^{\infty}\left(\frac{\ln k}{k}\right)^{p}$$
Determine whether the following series converge absolutely or conditionally, or diverge. $$\sum_{k=1}^{\infty} \frac{\cos k}{k^{3}}$$
Find the limit of the sequence $$\left\\{a_{n}\right\\}_{n=2}^{\infty}=\left\\{\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right) \cdots\left(1-\frac{1}{n}\right)\right\\}.$$
The CORDIC (COordinate Rotation DIgital Calculation) algorithm is used by most calculators to evaluate trigonometric and logarithmic functions. An important number in the CORDIC algorithm, called the aggregate constant, is \(\prod_{n=0}^{\infty} \frac{2^{n}}{\sqrt{1+2^{2 n}}},\) where \(\prod_{n=0}^{N} a_{n}\) represents the product \(a_{0} \cdot a_{1} \cdots a_{N}\). This infinite product is the limit of the sequence $$\left\\{\prod_{n=0}^{0} \frac{2^{n}}{\sqrt{1+2^{2 n}}} \cdot \prod_{n=0}^{1} \frac{2^{n}}{\sqrt{1+2^{2 n}}}, \prod_{n=0}^{2} \frac{2^{n}}{\sqrt{1+2^{2 n}}} \ldots .\right\\}.$$ Estimate the value of the aggregate constant.
Determine whether the following series converge absolutely or conditionally, or diverge. $$\sum_{k=2}^{\infty} \frac{(-1)^{k}}{\ln k}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.